Displaying 221 – 240 of 290

Showing per page

On the stability analysis of Darboux problem on both bounded and unbounded domains

Canan Çelik, Faruk Develi (2024)

Applications of Mathematics

In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results.

On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations

Luca Formaggia, Alexandra Moura, Fabio Nobile (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the coupling between three-dimensional (3D) and one-dimensional (1D) fluid-structure interaction (FSI) models describing blood flow inside compliant vessels. The 1D model is a hyperbolic system of partial differential equations. The 3D model consists of the Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall dynamics. A non standard formulation for the Navier-Stokes equations is adopted to have suitable boundary conditions for the...

On the stabilization of laminated beams with delay

Kassimu Mpungu, Tijani A. Apalara, Mukhiddin Muminov (2021)

Applications of Mathematics

Of concern in this paper is the laminated beam system with frictional damping and an internal constant delay term in the transverse displacement. Under suitable assumptions on the weight of the delay, we establish that the system's energy decays exponentially in the case of equal wave speeds of propagation, and polynomially in the case of non-equal wave speeds.

On the Stabilization of the Wave Equation by the Boundary

Cardoso, Fernando, Vodev, Georgi (2002)

Serdica Mathematical Journal

* Partially supported by CNPq (Brazil)We study the distribution of the (complex) eigenvalues for interior boundary value problems with dissipative boundary conditions in the case of C 1 -smooth boundary under some natural assumption on the behaviour of the geodesics. As a consequence we obtain energy decay estimates of the solutions of the corresponding wave equation.

On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems

Carlos Parés, Manuel Castro (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the numerical approximations of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The first goal is to introduce a general concept of well-balancing for numerical schemes solving this kind of systems. Once this concept stated, we investigate the well-balance properties of numerical schemes based on the generalized Roe linearizations introduced by [Toumi, J. Comp. Phys. 102 (1992) 360–373]. Next, this general theory is applied to obtain well-balanced...

Currently displaying 221 – 240 of 290