Displaying 261 – 280 of 2232

Showing per page

Blow-up of the solution to the initial-value problem in nonlinear three-dimensional hyperelasticity

J. A. Gawinecki, P. Kacprzyk (2008)

Applicationes Mathematicae

We consider the initial value problem for the nonlinear partial differential equations describing the motion of an inhomogeneous and anisotropic hyperelastic medium. We assume that the stored energy function of the hyperelastic material is a function of the point x and the nonlinear Green-St. Venant strain tensor e j k . Moreover, we assume that the stored energy function is C with respect to x and e j k . In our description we assume that Piola-Kirchhoff’s stress tensor p j k depends on the tensor e j k . This means...

Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping

Lorena Bociu, Irena Lasiecka (2008)

Applicationes Mathematicae

We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.

Boundary observability for the space semi-discretizations of the 1 – d wave equation

Juan Antonio Infante, Enrique Zuazua (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a...

Currently displaying 261 – 280 of 2232