Displaying 81 – 100 of 169

Showing per page

Exact Neumann boundary controllability for second order hyperbolic equations

Weijiu Liu, Graham Williams (1998)

Colloquium Mathematicae

Using HUM, we study the problem of exact controllability with Neumann boundary conditions for second order hyperbolic equations. We prove that these systems are exactly controllable for all initial states in L 2 ( Ω ) × ( H 1 ( Ω ) ) ' and we derive estimates for the control time T.

Exemples d’instabilités pour des équations d’ondes non linéaires

Guy Métivier (2002/2003)

Séminaire Bourbaki

Le but de l’exposé est de donner un guide de lecture pour un article de Gilles Lebeau où il est montré que le problème de Cauchy pour l’équation d’onde surcritique ( t 2 - Δ x ) u + u p = 0 est mal posé au sens de Hadamard dans l’espace d’énergie, pour p 7 en dimension 3. La preuve repose sur des constructions d’optique géométrique et des analyses d’instabilité dans des régimes fortement non linéaires. On donnera les étapes de l’analyse en essayant de les situer dans leur contexte plus général : construction de solutions...

Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation

Jong Yeoul Park, Sun Hye Park (2006)

Czechoslovak Mathematical Journal

We consider the damped semilinear viscoelastic wave equation u ' ' - Δ u + 0 t h ( t - τ ) div { a u ( τ ) } d τ + g ( u ' ) = 0 in Ω × ( 0 , ) with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.

Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order

Guo Wang Chen, Shu Bin Wang (1995)

Commentationes Mathematicae Universitatis Carolinae

The existence and uniqueness of classical global solution and blow up of non-global solution to the first boundary value problem and the second boundary value problem for the equation u t t - α u x x - β u x x t t = ϕ ( u x ) x are proved. Finally, the results of the above problem are applied to the equation arising from nonlinear waves in elastic rods u t t - a 0 + n a 1 ( u x ) n - 1 u x x - a 2 u x x t t = 0 .

Existence and nonexistence results for reaction-diffusion equations in product of cones

Abdallah Hamidi, Gennady Laptev (2003)

Open Mathematics

Problems of existence and nonexistence of global nontrivial solutions to quasilinear evolution differential inequalities in a product of cones are investigated. The proofs of the nonexistence results are based on the test-function method developed, for the case of the whole space, by Mitidieri, Pohozaev, Tesei and Véron. The existence result is established using the method of supersolutions.

Existence and stability results of nonlinear higher-order wave equation with a nonlinear source term and a delay term

Mama Abdelli, Abderrahmane Beniani, Nadia Mezouar, Ahmed Chahtou (2023)

Mathematica Bohemica

We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as t by applying the Lyapunov method.

Currently displaying 81 – 100 of 169