Displaying 1421 – 1440 of 2234

Showing per page

Periodic solutions of a nonlinear evolution problem

Nelson Nery Oliveira Castro, Nirzi G. de Andrade (2002)

Applications of Mathematics

In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.

Periodic solutions of nonlinear wave equations with non-monotone forcing terms

Massimiliano Berti, Luca Biasco (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the reduced action functional, through techniques inspired by regularity theory...

Currently displaying 1421 – 1440 of 2234