Displaying 1881 – 1900 of 2234

Showing per page

The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

Christian Merkle, Christian Rohde (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...

The wave map problem. Small data critical regularity

Igor Rodnianski (2005/2006)

Séminaire Bourbaki

The paper provides a description of the wave map problem with a specific focus on the breakthrough work of T. Tao which showed that a wave map, a dynamic lorentzian analog of a harmonic map, from Minkowski space into a sphere with smooth initial data and a small critical Sobolev norm exists globally in time and remains smooth. When the dimension of the base Minkowski space is ( 2 + 1 ) , the critical norm coincides with energy, the only manifestly conserved quantity in this (lagrangian) theory. As a consequence,...

Currently displaying 1881 – 1900 of 2234