Large Time Behavior of Solutions of Hyperbolic Balance laws
% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.
Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.
We study one-dimensional linear hyperbolic systems with -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.