Displaying 21 – 40 of 73

Showing per page

Large time behaviour of a class of solutions of second order conservation laws

Jan Goncerzewicz, Danielle Hilhorst (2000)

Banach Center Publications

% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

Limite de la solution de ut - ∆um + div F(u) = 0 lorsque m --> ∞.

Philippe Bénilan, Noureddine Igbida (2000)

Revista Matemática Complutense

Dans cette article, on étudie la limite lorsque m --> ∞ de la solution du problème de Cauchy ut - ∆um + div F(u) = 0 sur un ouvert Omega avec des conditions aux bords de type Dirichlet et une donnée initiale u0 ≥ 0.

Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions

Irina Kmit (2007)

Commentationes Mathematicae Universitatis Carolinae

We study one-dimensional linear hyperbolic systems with L -coefficients subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem.

Currently displaying 21 – 40 of 73