Continuity of the Darcy's law in the low-volume fraction limit
In this paper, we consider an initial boundary value problem for the two-dimensional primitive equations of large scale oceanic dynamics. Assuming that the depth of the ocean is a positive constant, we establish rigorous a priori bounds of the solution to problem. With the aid of these a priori bounds, the continuous dependence of the solution on changes in the boundary terms is obtained.
We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...
We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.
We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary...
This work deals with a system of nonlinear parabolic equations arising in turbulence modelling. The unknowns are the N components of the velocity field u coupled with two scalar quantities θ and φ. The system presents nonlinear turbulent viscosity and nonlinear source terms of the form and lying in L1. Some existence results are shown in this paper, including -estimates and positivity for both θ and φ.
Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain Ω ⊆ ℝ³ and a time interval [0,T), 0 < T ≤ ∞, with initial value u₀, external force f = div F, and viscosity ν > 0. As is well known, global regularity of u for general u₀ and f is an unsolved problem unless we pose additional assumptions on u₀ or on the solution u itself such as Serrin’s condition where 2/s + 3/q = 1. In the present paper we prove several local and global regularity properties by using assumptions...