On the controllability of the burger equation
We present here a return method to describe some attainable sets on an interval of the classical Burger equation by means of the variation of the domain.
This paper is devoted to the study of the incompressible Navier-Stokes equations with mass diffusion in a bounded domain in R³ with C³ boundary. We prove the existence of weak solutions, in the large, and the behavior of the solutions as the diffusion parameter λ → 0. Moreover, the existence of L²-strong solution, in the small, and in the large for small data, is proved. Asymptotic regularity (the regularity after a finite period) of a weak solution is studied. Finally, using the Dore-Venni theory,...
The existence for the Cauchy-Neumann problem for the Stokes system in a bounded domain is proved in a class such that the velocity belongs to , where r > 3. The proof is divided into three steps. First, the existence of solutions is proved in a half-space for vanishing initial data by applying the Marcinkiewicz multiplier theorem. Next, we prove the existence of weak solutions in a bounded domain and then we regularize them. Finally, the problem with nonvanishing initial data is considered....
The existence of solutions to the Dirichlet problem for the compressible linearized Navier-Stokes system is proved in a class such that the velocity vector belongs to with r > 3. The proof is done in two steps. First the existence for local problems with constant coefficients is proved by applying the Fourier transform. Next by applying the regularizer technique the existence in a bounded domain is shown.
We consider a two-dimensional Navier-Stokes shear flow with time dependent boundary driving and subject to Tresca law. We establish the existence of a unique global in time solution and then, using a recent method based on the concept of the Kuratowski measure of noncompactness of a bounded set, we prove the existence of the pullback attractor for the associated cocycle. This research is motivated by a problem from lubrication theory.
We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to or to with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces and with...
In this paper we deal with the stationary Navier-Stokes problem in a domain with compact Lipschitz boundary and datum in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of , with possible countable exceptional set, provided is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for bounded.
On the complement of the unit disk we consider solutions of the equations describing the stationary flow of an incompressible fluid with shear dependent viscosity. We show that the velocity field is equal to zero provided and uniformly. For slow flows the latter condition can be replaced by uniformly. In particular, these results hold for the classical Navier-Stokes case.
In this paper, we consider the well-known Fattorini’s criterion for approximate controllability of infinite dimensional linear systems of type y′ = Ay + Bu. We precise the result proved by Fattorini in [H.O. Fattorini, SIAM J. Control 4 (1966) 686–694.] for bounded input B, in the case where B can be unbounded or in the case of finite-dimensional controls. More precisely, we prove that if Fattorini’s criterion is satisfied and if the set of geometric multiplicities of A is bounded then approximate...
We study the -dimensional Boussinesq system with dissipation and diffusion generalized in terms of fractional Laplacians. In particular, we show that given the critical dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the supercritical case, we obtain component reduction results of regularity criteria and smallness conditions for the global regularity in dimensions two and three.