Displaying 501 – 520 of 787

Showing per page

Planar flows of incompressible heat-conducting shear-thinning fluids — existence analysis

Miroslav Bulíček, Oldřich Ulrych (2011)

Applications of Mathematics

We study the flow of an incompressible homogeneous fluid whose material coefficients depend on the temperature and the shear-rate. For large class of models we establish the existence of a suitable weak solution for two-dimensional flows of fluid in a bounded domain. The proof relies on the reconstruction of the globally integrable pressure, available due to considered Navier’s slip boundary conditions, and on the so-called L -truncation method, used to obtain the strong convergence of the velocity...

Problème de Stokes et système de Navier-Stokes incompressible à densité variable dans le demi-espace

Raphaël Danchin, Piotr Bogusław Mucha (2008/2009)

Séminaire Équations aux dérivées partielles

On s’intéresse à la résolution du système de Navier-Stokes incompressible à densité variable dans le demi-espace + n : = n - 1 × ] 0 , [ en dimension n 3 . On considère des données initiales à régularité critique. On établit que si la densité initiale est proche d’une constante strictement positive dans L W ˙ 1 , n et si la vitesse initiale est petite par rapport à la viscosité dans l’espace de Besov homogène B ˙ n , 1 0 alors le système de Navier-Stokes admet une unique solution globale. La démonstration repose sur de nouvelles estimations...

Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II

David Gérard-Varet, Daniel Han-Kwan, Frédéric Rousset (2014)

Journal de l’École polytechnique — Mathématiques

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.

Reduced resistive MHD in Tokamaks with general density

Bruno Després, Rémy Sart (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to derive a general model for reduced viscous and resistive Magnetohydrodynamics (MHD) and to study its mathematical structure. The model is established for arbitrary density profiles in the poloidal section of the toroidal geometry of Tokamaks. The existence of global weak solutions, on the one hand, and the stability of the fundamental mode around initial data, on the other hand, are investigated.

Currently displaying 501 – 520 of 787