Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Local existence of solutions of the free boundary problem for the equations of a magnetohydrodynamic incompressible fluid

Piotr Kacprzyk (2003)

Applicationes Mathematicae

Local existence of solutions is proved for equations describing the motion of a magnetohydrodynamic incompressible fluid in a domain bounded by a free surface. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. First by the Galerkin method and regularization techniques the existence of solutions of the linarized equations is proved; next by the method of successive aproximations the local existence is shown for the nonlinear problem....

Local Smoothness of Weak Solutions to the Magnetohydrodynamics Equations via Blowup Methods

Basil Nicolaenko, Alex Mahalov, Timofey Shilkin (2006/2007)

Séminaire Équations aux dérivées partielles

We demonstrate that there exist no self-similar solutions of the incompressible magnetohydrodynamics (MHD) equations in the space L 3 ( R 3 ) . This is a consequence of proving the local smoothness of weak solutions via blowup methods for weak solutions which are locally L 3 . We present the extension of the Escauriaza-Seregin-Sverak method to MHD systems.

Local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation in Besov spaces

Gang Wu, Jia Yuan (2007)

Applicationes Mathematicae

We study local well-posedness of the Cauchy problem for the generalized Camassa-Holm equation t u - ³ t x x u + 2 κ x u + x [ g ( u ) / 2 ] = γ ( 2 x u ² x x u + u ³ x x x u ) for the initial data u₀(x) in the Besov space B p , r s ( ) with max(3/2,1 + 1/p) < s ≤ m and (p,r) ∈ [1,∞]², where g:ℝ → ℝ is a given C m -function (m ≥ 4) with g(0)=g’(0)=0, and κ ≥ 0 and γ ∈ ℝ are fixed constants. Using estimates for the transport equation in the framework of Besov spaces, compactness arguments and Littlewood-Paley theory, we get a local well-posedness result.

Long-time behavior for 2D non-autonomous g-Navier-Stokes equations

Cung The Anh, Dao Trong Quyet (2012)

Annales Polonici Mathematici

We study the first initial boundary value problem for the 2D non-autonomous g-Navier-Stokes equations in an arbitrary (bounded or unbounded) domain satisfying the Poincaré inequality. The existence of a weak solution to the problem is proved by using the Galerkin method. We then show the existence of a unique minimal finite-dimensional pullback σ -attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms. Furthermore, when the force is time-independent...

Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system

Helmut Abels (2009)

Banach Center Publications

We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids of the same density in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard system, which can describe the evolution of droplet formation and collision during the flow. We review some results on...

Low regularity Cauchy theory for the water-waves problem: canals and swimming pools

T. Alazard, N. Burq, C. Zuily (2011)

Journées Équations aux dérivées partielles

The purpose of this talk is to present some recent results about the Cauchy theory of the gravity water waves equations (without surface tension). In particular, we clarify the theory as well in terms of regularity indexes for the initial conditions as fin terms of smoothness of the bottom of the domain (namely no regularity assumption is assumed on the bottom). Our main result is that, following the approach developed in [1, 2], after suitable para-linearizations, the system can be arranged into...

Lower and upper bounds for the Rayleigh conductivity of a perforated plate

S. Laurens, S. Tordeux, A. Bendali, M. Fares, P. R. Kotiuga (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Lower and upper bounds for the Rayleigh conductivity of a perforation in a thick plate are usually derived from intuitive approximations and by physical reasoning. This paper addresses a mathematical justification of these approaches. As a byproduct of the rigorous handling of these issues, some improvements to previous bounds for axisymmetric holes are given as well as new estimates for tilted perforations. The main techniques are a proper use of the Dirichlet and Kelvin variational principlesin...

Currently displaying 21 – 33 of 33

Previous Page 2