Displaying 41 – 60 of 280

Showing per page

Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter

Michael S. Vogelius, Darko Volkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider solutions to the time-harmonic Maxwell's Equations of a TE (transverse electric) nature. For such solutions we provide a rigorous derivation of the leading order boundary perturbations resulting from the presence of a finite number of interior inhomogeneities of small diameter. We expect that these formulas will form the basis for very effective computational identification algorithms, aimed at determining information about the inhomogeneities from electromagnetic boundary measurements. ...

Asymptotiques de Lifshitz

Frédéric Klopp (2001/2002)

Séminaire Équations aux dérivées partielles

Cet exposé a pour but de présenter des résultats récents de l’auteur concernant les asymptotiques de Lifshitz pour des perturbations aléatoires d’opérateurs de Schrödinger périodiques. Certains de ces résultats ont été obtenus en collaboration avec T. Wolff.

Boundary control of the Maxwell dynamical system: lack of controllability by topological reasons

Mikhail Belishev, Aleksandr Glasman (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T, T* the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in ΩT whereas for larger T < T* a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of ΩT.

Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations

Yue-Jun Peng (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O ( ε 1 2 ) to the quasi-neutral...

Boundary layer analysis and quasi-neutral limits in the drift-diffusion equations

Yue-Jun Peng (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with boundary layers and quasi-neutral limits in the drift-diffusion equations. We first show that this limit is unique and determined by a system of two decoupled equations with given initial and boundary conditions. Then we establish the boundary layer equations and prove the existence and uniqueness of solutions with exponential decay. This yields a globally strong convergence (with respect to the domain) of the sequence of solutions and an optimal convergence rate O ( ε 1 2 ) to the quasi-neutral...

Boundary layer correctors and generalized polarization tensor for periodic rough thin layers. A review for the conductivity problem

Clair Poignard (2012)

ESAIM: Proceedings

We study the behaviour of the steady-state voltage potential in a material composed of a two-dimensional object surrounded by a rough thin layer and embedded in an ambient medium. The roughness of the layer is supposed to be εα–periodic, ε being the magnitude of the mean thickness of the layer, and α a positive parameter describing the degree of roughness. For ε tending to zero, we determine the appropriate boundary layer correctors which lead to approximate transmission conditions equivalent to...

Boundary stabilization of Maxwell’s equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell’s equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard” identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks.

Boundary stabilization of Maxwell's equations with space-time variable coefficients

Serge Nicaise, Cristina Pignotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the stabilization of Maxwell's equations with space-time variable coefficients in a bounded region with a smooth boundary by means of linear or nonlinear Silver–Müller boundary condition. This is based on some stability estimates that are obtained using the “standard" identity with multiplier and appropriate properties of the feedback. We deduce an explicit decay rate of the energy, for instance exponential, polynomial or logarithmic decays are available for appropriate feedbacks. ...

Currently displaying 41 – 60 of 280