Displaying 41 – 60 of 95

Showing per page

High-order fractional partial differential equation transform for molecular surface construction

Langhua Hu, Duan Chen, Guo-Wei Wei (2013)

Molecular Based Mathematical Biology

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

Improving Cancer Therapy by Doxorubicin and Granulocyte Colony-Stimulating Factor: Insights from a Computerized Model of Human Granulopoiesis

V. Vainstein, Y. Ginosar, M. Shoham, A. Ianovski, A. Rabinovich, Y. Kogan, V. Selitser, Z. Agur (2010)

Mathematical Modelling of Natural Phenomena

Neutropenia is a significant dose-limiting toxicity of cancer chemotherapy, especially in dose-intensified regimens. It is widely treated by injections of Granulocyte Colony-Stimulating Factor (G-CSF). However, optimal schedules of G-CSF administration are still not determined. In order to aid in identifying more efficacious and less neutropenic treatment protocols, we studied a detailed physiologically-based computer model of granulopoiesis, as affected by different treatment schedules of doxorubicin...

Inverse problem for a physiologically structured population model with variable-effort harvesting

Ruslan V. Andrusyak (2017)

Open Mathematics

We consider the inverse problem of determining how the physiological structure of a harvested population evolves in time, and of finding the time-dependent effort to be expended in harvesting, so that the weighted integral of the density, which may be, for example, the total number of individuals or the total biomass, has prescribed dynamics. We give conditions for the existence of a unique, global, weak solution to the problem. Our investigation is carried out using the method of characteristics...

Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion

K. Böttger, H. Hatzikirou, A. Chauviere, A. Deutsch (2012)

Mathematical Modelling of Natural Phenomena

Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous cell proliferation and motility rates. The interplay of proliferation and migration dynamics plays an important role in the invasion of these malignant tumors. We analyze the regulation of proliferation and migration processes with a lattice-gas cellular automaton (LGCA). We study and characterize the influence of the migration/proliferation dichotomy (also known...

Irregularity of Turing patterns in the Thomas model with a unilateral term

Rybář, Vojtěch, Vejchodský, Tomáš (2015)

Programs and Algorithms of Numerical Mathematics

In this contribution we add a unilateral term to the Thomas model and investigate the resulting Turing patterns. We show that the unilateral term yields nonsymmetric and irregular patterns. This contrasts with the approximately symmetric and regular patterns of the classical Thomas model. In addition, the unilateral term yields Turing patterns even for smaller ratio of diffusion constants. These conclusions accord with the recent findings about the influence of the unilateral term in a model for...

Local Collapses in the Truscott-Brindley Model

I. Siekmann, H. Malchow (2008)

Mathematical Modelling of Natural Phenomena

Relaxation oscillations are limit cycles with two clearly different time scales. In this article the spatio-temporal dynamics of a standard prey-predator system in the parameter region of relaxation oscillation is investigated. Both prey and predator population are distributed irregularly at a relatively high average level between a maximal and a minimal value. However, the slowly developing complex pattern exhibits a feature of “inverse excitability”: Both populations show collapses which occur...

Long-Time Simulation of a Size-Structured Population Model with a Dynamical Resource

L. M. Abia, O. Angulo, J. C. López-Marcos, M. A. López-Marcos (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we study the numerical approximation of a size-structured population model whose dependency on the environment is managed by the evolution of a vital resource. We show that this is a difficult task: some numerical methods are not suitable for a long-time integration. We analyze the reasons for the failure.

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical modeling of early atherosclerotic lesions***

Vincent Calvez, Jean Gabriel Houot, Nicolas Meunier, Annie Raoult, Gabriela Rusnakova (2010)

ESAIM: Proceedings

This article is devoted to the construction of a mathematical model describing the early formation of atherosclerotic lesions. The early stage of atherosclerosis is an inflammatory process that starts with the penetration of low density lipoproteins in the intima and with their oxidation. This phenomenon is closely linked to the local blood flow dynamics. Extending a previous work [5] that was mainly restricted to a one-dimensional setting, we couple...

Mathematical models of tumor growth systems

Takashi Suzuki (2012)

Mathematica Bohemica

We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.

Modeling Non-Stationary Processes of Diffusion of Solute Substances in the Near-Bottom Layer ofWater Reservoirs: Variation of the Direction of Flows and Assessment of Admissible Biogenic Load

V. V. Kozlov (2009)

Mathematical Modelling of Natural Phenomena

The paper is devoted to mathematical modelling and numerical computations of a nonstationary free boundary problem. The model is based on processes of molecular diffusion of some products of chemical decomposition of a solid organic substance concentrated in bottom sediments. It takes into account non-stationary multi-component and multi-stage chemical decomposition of organic substances and the processes of sorption desorption under aerobic and anaerobic conditions. Such a model allows one to...

Modeling of the oxygen transfer in the respiratory process

Sébastien Martin, Bertrand Maury (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we propose an integrated model for oxygen transfer into the blood, coupled with a lumped mechanical model for the ventilation process. Objectives. We aim at investigating oxygen transfer into the blood at rest or exercise. The first task consists in describing nonlinear effects of the oxygen transfer under normal conditions. We also include the possible diffusion limitation in oxygen transfer observed in extreme regimes involving parameters such as alveolar and venous blood oxygen...

Modelling and Mathematical Analysis of the Glass Eel Migration in the Adour River Estuary

M. Odunlami, G. Vallet (2012)

Mathematical Modelling of Natural Phenomena

In this paper we are interested in a mathematical model of migration of grass eels in an estuary. We first revisit a previous model proposed by O. Arino and based on a degenerate convection-diffusion equation of parabolic-hyperbolic type with time-varying subdomains. Then, we propose an adapted mathematical framework for this model, we prove a result of existence of a weak solution and we propose some numerical simulations.

Modelling of Plant Growth with Apical or Basal Meristem

N. Bessonov, F. Crauste, V. Volpert (2011)

Mathematical Modelling of Natural Phenomena

Plant growth occurs due to cell proliferation in the meristem. We model the case of apical meristem specific for branch growth and the case of basal meristem specific for bulbous plants and grass. In the case of apical growth, our model allows us to describe the variety of plant forms and lifetimes, endogenous rhythms and apical domination. In the case of basal growth, the spatial structure, which corresponds to the appearance of leaves, results...

Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents

S. R. McDougall, M. A.J. Chaplain, A. Stéphanou, A. R.A. Anderson (2010)

Mathematical Modelling of Natural Phenomena

Over the past decade or so, there have been a large number of modelling approaches aimed at elucidating the most important mechanisms affecting the formation of new capillaries from parent blood vessels — a process known as angiogenesis. Most studies have focussed upon the way in which capillary sprouts are initiated and migrate in response to diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the contexts of solid tumour...

Currently displaying 41 – 60 of 95