Vacuum solutions of a stationary drift-diffusion model
We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165–186] when the bottom is flat. We generalize here this result with a new class of equations taking into account...
Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.
Plant growth depends essentially on nutrients coming from the roots and metabolites produced by the plant. Appearance of new branches is determined by concentrations of certain plant hormones. The most important of them are Auxin and Cytokinin. Auxin is produced in the growing, Cytokinin in either roots or in growing parts. Many dynamical models of this phenomena have been studied in [1]. In [5], the authors deal with one branch model. In this work,...
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy’s law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
In this paper, we consider a 2D mathematical modelling of the vertical compaction effect in a water saturated sedimentary basin. This model is described by the usual conservation laws, Darcy's law, the porosity as a function of the vertical component of the effective stress and the Kozeny-Carman tensor, taking into account fracturation effects. This model leads to study the time discretization of a nonlinear system of partial differential equations. The existence is obtained by a fixed-point argument....
We consider the theory of very weak solutions of the stationary Stokes system with nonhomogeneous boundary data and divergence in domains of half space type, such as , bent half spaces whose boundary can be written as the graph of a Lipschitz function, perturbed half spaces as local but possibly large perturbations of , and in aperture domains. The proofs are based on duality arguments and corresponding results for strong solutions in these domains, which have to be constructed in homogeneous...
There are two mathematical models of elastic walls of healthy and atherosclerotic blood vessels developed and studied. The models are included in a numerical model of global blood circulation via recovery of the vessel wall state equation. The joint model allows us to study the impact of arteries atherosclerotic disease of a set of arteries on regional haemodynamics.
Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.
We study vortices for solutions of the perturbed Ginzburg–Landau equations where is estimated in . We prove upper bounds for the Ginzburg–Landau energy in terms of , and obtain lower bounds for in terms of the vortices when these form “unbalanced clusters” where . These results will serve in Part II of this paper to provide estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow one to study various phenomena occurring in this flow, including...
We deduce from the first part of this paper [S1] estimates on the energy-dissipation rates for solutions of the Ginzburg–Landau heat flow, which allow us to study various phenomena occurring in this flow, including vortex collisions; they allow in particular extending the dynamical law of vortices past collision times.