Displaying 261 – 280 of 349

Showing per page

Steady Boussinesq system with mixed boundary conditions including friction conditions

Tujin Kim (2022)

Applications of Mathematics

In this paper we are concerned with the steady Boussinesq system with mixed boundary conditions. The boundary conditions for fluid may include Tresca slip, leak, one-sided leak, velocity, vorticity, pressure and stress conditions together and the conditions for temperature may include Dirichlet, Neumann and Robin conditions together. For the problem involving the static pressure and stress boundary conditions, it is proved that if the data of the problem are small enough, then there exists a solution...

Steady compressible Navier-Stokes-Fourier system in two space dimensions

Petra Pecharová, Milan Pokorný (2010)

Commentationes Mathematicae Universitatis Carolinae

We study steady flow of a compressible heat conducting viscous fluid in a bounded two-dimensional domain, described by the Navier-Stokes-Fourier system. We assume that the pressure is given by the constitutive equation p ( ρ , θ ) ρ γ + ρ θ , where ρ is the density and θ is the temperature. For γ > 2 , we prove existence of a weak solution to these equations without any assumption on the smallness of the data. The proof uses special approximation of the original problem, which guarantees the pointwise boundedness of the...

Steady compressible Oseen flow with slip boundary conditions

Tomasz Piasecki (2009)

Banach Center Publications

We prove the existence of solution in the class H²(Ω) × H¹(Ω) to the steady compressible Oseen system with slip boundary conditions in a two dimensional, convex domain with boundary of class H 5 / 2 . The method is to regularize a weak solution obtained via the Galerkin method. The problem of regularization is reduced to the problem of solvability of a certain transport equation by application of the Helmholtz decomposition. The method works under an additional assumption on the geometry of the boundary....

Steady plane flow of viscoelastic fluid past an obstacle

Antonín Novotný, Milan Pokorný (2002)

Applications of Mathematics

We consider the steady plane flow of certain classes of viscoelastic fluids in exterior domains with a non-zero velocity prescribed at infinity. We study existence as well as asymptotic behaviour of solutions near infinity and show that for sufficiently small data the solution decays near infinity as fast as the fundamental solution to the Oseen problem.

Steady vortex rings with swirl in an ideal fluid: asymptotics for some solutions in exterior domains

Tadie (1999)

Applications of Mathematics

In this paper, the axisymmetric flow in an ideal fluid outside the infinite cylinder ( r d ) where ( r , θ , z ) denotes the cylindrical co-ordinates in 3 is considered. The motion is with swirl (i.e. the θ -component of the velocity of the flow is non constant). The (non-dimensional) equation governing the phenomenon is (Pd) displayed below. It is known from e.g. that for the problem without swirl ( f q = 0 in (f)) in the whole space, as the flux constant k tends to , 1) dist ( 0 z , A ) = O ( k 1 / 2 ) ; diam A = O ( exp ( - c 0 k 3 / 2 ) ) ; 2) ( k 1 / 2 Ψ ) k converges to a vortex cylinder U m (see...

Steady-state buoyancy-driven viscous flow with measure data

Tomáš Roubíček (2001)

Mathematica Bohemica

Steady-state system of equations for incompressible, possibly non-Newtonean of the p -power type, viscous flow coupled with the heat equation is considered in a smooth bounded domain Ω n , n = 2 or 3, with heat sources allowed to have a natural L 1 -structure and even to be measures. The existence of a distributional solution is shown by a fixed-point technique for sufficiently small data if p > 3 / 2 (for n = 2 ) or if p > 9 / 5 (for n = 3 ).

Stochastic Lagrangian method for downscaling problems in computational fluid dynamics

Frédéric Bernardin, Mireille Bossy, Claire Chauvin, Jean-François Jabir, Antoine Rousseau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work aims at introducing modelling, theoretical and numerical studies related to a new downscaling technique applied to computational fluid dynamics. Our method consists in building a local model, forced by large scale information computed thanks to a classical numerical weather predictor. The local model, compatible with the Navier-Stokes equations, is used for the small scale computation (downscaling) of the considered fluid. It is inspired by Pope's works on turbulence, and consists in...

Stokes equations in asymptotically flat layers

Helmut Abels (2005)

Banach Center Publications

We study the generalized Stokes resolvent equations in asymptotically flat layers, which can be considered as compact perturbations of an infinite (flat) layer Ω = n - 1 × ( - 1 , 1 ) . Besides standard non-slip boundary conditions, we consider a mixture of slip and non-slip boundary conditions on the upper and lower boundary, respectively. We discuss the results on unique solvability of the generalized Stokes resolvent equations as well as the existence of a bounded H -calculus for the associated Stokes operator and some...

Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem

Stanislav Nikolaevich Antontsev, Jesús Ildefonso Díaz, Hermenegildo Borges de Oliveira (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics literature, we start by establishing some results about existence and uniqueness of weak solutions. Then, we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by...

Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in 3

M. Burak Erdoğan, Michael Goldberg, Wilhelm Schlag (2008)

Journal of the European Mathematical Society

We present a novel approach for bounding the resolvent of H = - Δ + i ( A · + · A ) + V = : - Δ + L 1 for large energies. It is shown here that there exist a large integer m and a large number λ 0 so that relative to the usual weighted L 2 -norm, ( L ( - Δ + ( λ + i 0 ) ) - 1 ) m < 1 2 2 for all λ > λ 0 . This requires suitable decay and smoothness conditions on A , V . The estimate (2) is trivial when A = 0 , but difficult for large A since the gradient term exactly cancels the natural decay of the free resolvent. To obtain (2), we introduce a conical decomposition of the resolvent and then sum over...

Currently displaying 261 – 280 of 349