Displaying 241 – 260 of 349

Showing per page

Stabilization of walls for nano-wires of finite length

Gilles Carbou, Stéphane Labbé (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.

Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills Problems

Pierre Raphaël, Igor Rodnianski (2008/2009)

Séminaire Équations aux dérivées partielles

This note summarizes the results obtained in [30]. We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the 𝕊 2 target in all homotopy classes and for the equivariant critical S O ( 4 ) Yang-Mills problem. We derive sharp asymptotics on the dynamics at blow up time and prove quantization of the energy focused at the singularity.

Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension

Malte Braack, Andreas Prohl (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The isothermal Navier–Stokes–Korteweg system is used to model dynamics of a compressible fluid exhibiting phase transitions between a liquid and a vapor phase in the presence of capillarity effects close to phase boundaries. Standard numerical discretizations are known to violate discrete versions of inherent energy inequalities, thus leading to spurious dynamics of computed solutions close to static equilibria (e.g., parasitic currents). In this work, we propose a time-implicit discretization of...

Static electromagnetic fields in monotone media

Rainer Picard (1992)

Banach Center Publications

The paper considers the static Maxwell system for a Lipschitz domain with perfectly conducting boundary. Electric and magnetic permeability ε and μ are allowed to be monotone and Lipschitz continuous functions of the electromagnetic field. The existence theory is developed in the framework of the theory of monotone operators.

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials.

Stationary solutions of the generalized Smoluchowski-Poisson equation

Robert Stańczy (2008)

Banach Center Publications

The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.

Stationary solutions of two-dimensional heterogeneous energy models with multiple species

Annegret Glitzky, Rolf Hünlich (2004)

Banach Center Publications

We investigate stationary energy models in heterostructures consisting of continuity equations for all involved species, of a Poisson equation for the electrostatic potential and of an energy balance equation. The resulting strongly coupled system of elliptic differential equations has to be supplemented by mixed boundary conditions. If the boundary data are compatible with thermodynamic equilibrium then there exists a unique steady state. We prove that in a suitable neighbourhood of such a thermodynamic...

Stationary states and moving planes

Gerhard Ströhmer (2008)

Banach Center Publications

Most of the paper deals with the application of the moving plane method to different questions concerning stationary accumulations of isentropic gases. The first part compares the concepts of stationarity arising from the points of view of dynamics and the calculus of variations. Then certain stationary solutions are shown to be unstable. Finally, using the moving plane method, a short proof of the existence of energy-minimizing gas balls is given.

Currently displaying 241 – 260 of 349