Displaying 281 – 300 of 3659

Showing per page

An analysis of quantum Fokker-Planck models: a Wigner function approach.

Anton Arnold, José L. López, Peter A. Markowich, Juan Soler (2004)

Revista Matemática Iberoamericana

The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck...

An analytic method for the initial value problem of the electric field system in vertical inhomogeneous anisotropic media

Valery Yakhno, Ali Sevimlican (2011)

Applications of Mathematics

The time-dependent system of partial differential equations of the second order describing the electric wave propagation in vertically inhomogeneous electrically and magnetically biaxial anisotropic media is considered. A new analytical method for solving an initial value problem for this system is the main object of the paper. This method consists in the following: the initial value problem is written in terms of Fourier images with respect to lateral space variables, then the resulting problem...

An analytical and numerical approach to a bilateral contact problem with nonmonotone friction

Mikaël Barboteu, Krzysztof Bartosz, Piotr Kalita (2013)

International Journal of Applied Mathematics and Computer Science

We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The first approach...

An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.

M. A. Rojas-Medar, S. A. Lorca (1995)

Revista Matemática de la Universidad Complutense de Madrid

We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.

An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch, Marguerite Gisclon, Chi-Kun Lin (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x . This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low...

An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit

Didier Bresch, Marguerite Gisclon, Chi-Kun Lin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss...

An existence proof for the stationary compressible Stokes problem

A. Fettah, T. Gallouët, H. Lakehal (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.

An existence result in nonlinear theory of electromagnetic fields

Dorin Iesan, Antonio Scalia (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper is concerned with the nonlinear theory of equilibrium for materials which do not conduct electricity. An existence and uniqueness result is established.

An existence theorem for the Boussinesq equations with non-Dirichlet boundary conditions

Zdeněk Skalák, Petr Kučera (2000)

Applications of Mathematics

The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...

Currently displaying 281 – 300 of 3659