Asymptotic behavior of the ground state of large atoms
This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.
We study the one-dimensional motion of the viscous gas represented by the system , , with the initial and the boundary conditions , . We are concerned with the external forces, namely the function , which do not become small for large time . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary -energy method.
The asymptotic behaviour of solutions of a class of free-boundary problems arising in vortex theory is discussed.
This article studies the asymptotic behavior of the number of the negative eigenvalues as of the two dimensional Pauli operators with electric potential decaying at and with nonconstant magnetic field , which is assumed to be bounded or to decay at . In particular, it is shown that , when decays faster than under some additional conditions.
We consider the double-diffusive convection phenomenon and analyze the governing equations. A system of partial differential equations describing the convective flow arising when a layer of fluid with a dissolved solute is heated from below is considered. The problem is placed in a functional analytic setting in order to prove a theorem on existence, uniqueness and continuous dependence on initial data of weak solutions in the class . This theorem enables us to show that the infinite-dimensional...
We prove a priori estimates for a linear system of partial differential equations originating from the equations for the flow of a barotropic compressible viscous fluid under the influence of the gravity it generates. These estimates will be used in a forthcoming paper to prove the nonlinear stability of the motionless, spherically symmetric equilibrium states of barotropic, self-gravitating viscous fluids with respect to perturbations of zero total angular momentum. These equilibrium states as...