Comparison between different numerical discretizations for a Darcy-Forchheimer model.
In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function . The main idea of the proof relies on the compensated compactness theory.
En utilisant une méthode dépendante du temps, nous démontrons la complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats. On introduit l'observable de vitesse asymptotique et on décrit son spectre (sous des hypothèses plus faibles que pour la complétude asymptotique). Les méthodes utilisées sont inspirées par celles de l'analyse du problème à deux corps en mécanique quantique.
There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a -valued function defined on the boundary of a bounded regular domain of . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...
Les données, i.e. l’ouvert et la force appliquée , sont supposées de classe . Il est montré que toute solution des équations de Navier-Stokes dans l’ouvert , bornée dans ( ou ) sur un intervalle de temps semi-infini , est aussi bornée, pour , dans tous les espaces . Il en résulte que tout ensemble fonctionnel invariant ou attracteur borné dans (ou même , ) est porté par . Le cas où les forces appliquées dérivent d’un potentiel (i.e. ) est abordé : il est montré que toute solution...
Nous étudions le comportement pour les grands temps de l’équation de Schrödinger-Poisson (NLSP) avec un terme de force extérieure supplémentaire et un terme de dissipation d’ordre zéro, la variable d’espace étant dans un domaine borné de . Nous démontrons que ce comportement est décrit par un attracteur global de dimension de Hausdorff finie pour la topologie forte de .
We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.
We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.
We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.
A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform....