Displaying 601 – 620 of 3659

Showing per page

Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations

Eduard Feireisl (1990)

Aplikace matematiky

In the present paper, the existence of a weak time-periodic solution to the nonlinear telegraph equation U t t + d U t - σ ( x , t , U x ) x + a U = f ( x , t , U x , U t , U ) with the Dirichlet boundary conditions is proved. No “smallness” assumptions are made concerning the function f . The main idea of the proof relies on the compensated compactness theory.

Complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats

Dietrich Häfner (2001)

Annales de l’institut Fourier

En utilisant une méthode dépendante du temps, nous démontrons la complétude asymptotique pour l'équation des ondes dans une classe d'espaces-temps stationnaires et asymptotiquement plats. On introduit l'observable de vitesse asymptotique et on décrit son spectre (sous des hypothèses plus faibles que pour la complétude asymptotique). Les méthodes utilisées sont inspirées par celles de l'analyse du problème à deux corps en mécanique quantique.

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...

Comportement à l'infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs)

Colette Guillopé (1982)

Annales de l'institut Fourier

Les données, i.e. l’ouvert Ω et la force appliquée f , sont supposées de classe 𝒞 . Il est montré que toute solution des équations de Navier-Stokes dans l’ouvert Ω , bornée dans H 1 ( Ω ) N ( N = 2 ou 3 ) sur un intervalle de temps semi-infini ( t 0 + ) , est aussi bornée, pour t + , dans tous les espaces H m ( Ω ) N . Il en résulte que tout ensemble fonctionnel invariant ou attracteur borné dans H 1 ( Ω ) ( N (ou même H 1 / 2 + ϵ ( Ω ) N , ϵ > 0 ) est porté par 𝒞 ( Ω ) . Le cas où les forces appliquées dérivent d’un potentiel (i.e. f = 0 ) est abordé : il est montré que toute solution...

Comportement asymptotique des solutions d’un système d’équations de Schrödinger-Poisson sur un domaine borné de 3

Amna Dabaa (2010)

Annales mathématiques Blaise Pascal

Nous étudions le comportement pour les grands temps de l’équation de Schrödinger-Poisson (NLSP) avec un terme de force extérieure supplémentaire et un terme de dissipation d’ordre zéro, la variable d’espace x étant dans un domaine borné Ω de 3 . Nous démontrons que ce comportement est décrit par un attracteur global de dimension de Hausdorff finie pour la topologie forte de H 0 1 ( Ω ) .

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the fundamental solution of electrodynamics for anisotropic materials

Valery Yakhno, Handan Yaslan, Tatiana Yakhno (2012)

Open Mathematics

A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform....

Currently displaying 601 – 620 of 3659