Displaying 621 – 640 of 3659

Showing per page

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Computing guided modes for an unbounded stratified medium in integrated optics

Fabrice Mahé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a finite element method to compute guided modes in a stratified medium. The major difficulty to overcome is related to the unboundedness of the stratified medium. Our method is an alternative to the use of artificial boundary conditions and to the use of integral representation formulae. The domain is bounded in such a way we can write the solution on its lateral boundaries in terms of Fourier series. The series is then truncated for the computations over the bounded domain. The problem...

Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith (2005)

Applications of Mathematics

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations

Zdeněk Skalák (2002)

Commentationes Mathematicae Universitatis Carolinae

In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin’s type on velocity 𝐯 and pressure p under which ( 𝐱 0 , t 0 ) Ω × ( 0 , T ) is a regular point of 𝐯 . The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex ( 𝐱 0 , t 0 ) and the axis parallel with the t -axis.

Confining quantum particles with a purely magnetic field

Yves Colin de Verdière, Françoise Truc (2010)

Annales de l’institut Fourier

We consider a Schrödinger operator with a magnetic field (and no electric field) on a domain in the Euclidean space with a compact boundary. We give sufficient conditions on the behaviour of the magnetic field near the boundary which guarantees essential self-adjointness of this operator. From the physical point of view, it means that the quantum particle is confined in the domain by the magnetic field. We construct examples in the case where the boundary is smooth as well as for polytopes; These...

Connections between real polynomial solutions of hypergeometric-type differential equations with Rodrigues formula

Hans Weber (2007)

Open Mathematics

Starting from the Rodrigues representation of polynomial solutions of the general hypergeometric-type differential equation complementary polynomials are constructed using a natural method. Among the key results is a generating function in closed form leading to short and transparent derivations of recursion relations and addition theorem. The complementary polynomials satisfy a hypergeometric-type differential equation themselves, have a three-term recursion among others and obey Rodrigues formulas....

Consistency, accuracy and entropy behaviour of remeshed particle methods

Lisl Weynans, Adrien Magni (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magni devised recently...

Consistency, accuracy and entropy behaviour of remeshed particle methods

Lisl Weynans, Adrien Magni (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of...

Currently displaying 621 – 640 of 3659