The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1001 –
1020 of
3679
This work is concerned with the study of the flow of an incompressible viscoelastic fluid of White-Metzner type. These models lead to systems of partial differential equations that are evolutionary, are globally well posed. The objective of this article is to prove the local and global existence of solutions of these systems.
This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation in , where is a bounded domain of ,...
For a bounded domain , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system , , with , , and very general data classes for , , such that may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of...
On présente dans cet exposé des résultats récents de Merle et Raphael sur l’analyse des solutions explosives de l’équation de Schrödinger critique. On s’intéresse en particulier à leur preuve du fait que les solutions d’énergie négative (dont on savait qu’elles explosaient par l’argument du viriel) et dont la norme est proche de celle de l’état fondamental, explosent au régime du “log log”et que ce comportement est stable.
We consider a class of 1d Lagrangian systems with random forcing in the spaceperiodic setting:
These systems have been studied since the 1990s by Khanin, Sinai and their collaborators [7, 9, 11, 12, 15]. Here we give an overview of their results and then we expose our recent proof of the exponential convergence to the stationary measure [6]. This is the first such result in a classical setting, i.e. in the dual-Lipschitz metric with respect to the Lebesgue space for finite , partially answering...
We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.
We performe an exponential decay analysis for a Timoshenko-type system under the thermal effect by constructing the Lyapunov functional. More precisely, this thermal effect is acting as a mechanism for dissipating energy generated by the bending of the beam, acting only on the vertical displacement equation, different from other works already existing in the literature. Furthermore, we show the good placement of the problem using semigroup theory.
Currently displaying 1001 –
1020 of
3679