Displaying 1161 – 1180 of 3659

Showing per page

Global in Time Stability of Steady Shocks in Nozzles

Jeffrey Rauch, Chunjing Xie, Zhouping Xin (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We prove global dynamical stability of steady transonic shock solutions in divergent quasi-one-dimensional nozzles. One of the key improvements compared with previous results is that we assume neither the smallness of the slope of the nozzle nor the weakness of the shock strength. A key ingredient of the proof are the derivation a exponentially decaying energy estimates for a linearized problem.

Global regular nonstationary flow for the Navier-Stokes equations in a cylindrical pipe

Piotr Kacprzyk (2007)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations describing the motion of an incompressible viscous fluid in a cylindrical pipe with large inflow and outflow is shown. Global existence is proved in two steps. First, by the Leray-Schauder fixed point theorem we prove local existence with large existence time. Next, the local solution is prolonged step by step. The existence is proved without any restrictions on the magnitudes of the inflow, outflow, external force and initial...

Global regular solutions to the Navier-Stokes equations in a cylinder

Wojciech M. Zajączkowski (2006)

Banach Center Publications

The existence and uniqueness of solutions to the Navier-Stokes equations in a cylinder Ω and with boundary slip conditions is proved. Assuming that the azimuthal derivative of cylindrical coordinates and azimuthal coordinate of the initial velocity and the external force are sufficiently small we prove long time existence of regular solutions such that the velocity belongs to W 5 / 2 2 , 1 ( Ω × ( 0 , T ) ) and the gradient of the pressure to L 5 / 2 ( Ω × ( 0 , T ) ) . We prove the existence of solutions without any restrictions on the lengths of the...

Global regularity for the 3D MHD system with damping

Zujin Zhang, Xian Yang (2016)

Colloquium Mathematicae

We study the Cauchy problem for the 3D MHD system with damping terms ε | u | α - 1 u and δ | b | β - 1 b (ε, δ > 0 and α, β ≥ 1), and show that the strong solution exists globally for any α, β > 3. This improves the previous results significantly.

Global S L ( 2 , R ) ˜ representations of the Schrödinger equation with singular potential

Jose Franco (2012)

Open Mathematics

We study the representation theory of the solution space of the one-dimensional Schrödinger equation with singular potential V λ(x) = λx −2 as a representation of S L ( 2 , ) ˜ . The subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. By studying the subspace of K-finite vectors in this space, a distinguished family of potentials, parametrized by the triangular numbers is shown to generate a global representation of S L ( 2 , ) ˜ ⋉ H 3, where H...

Global solution to a generalized nonisothermal Ginzburg-Landau system

Nesrine Fterich (2010)

Applications of Mathematics

The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn) system of PDEs accounting for nonisothermal phase transition phenomena which was recently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5 (2005), 753–768. The existence of solutions to a related Neumann-Robin problem is established in an N 3 -dimensional space setting. A fixed point procedure guarantees the existence of solutions...

Currently displaying 1161 – 1180 of 3659