Displaying 1541 – 1560 of 3679

Showing per page

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...

Mathematical analysis of the stabilization of lamellar phases by a shear stress

V. Torri (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 2D mathematical model describing the motion of a solution of surfactants submitted to a high shear stress in a Couette - Taylor system. We are interested in a stabilization process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists global in time solution for small initial data and that the solution of the linearized system (controlled by a nonconstant parameter) tends to 0 as t goes to infinity. This explains rigorously some experiments.

Mathematical analysis of the stabilization of lamellar phases by a shear stress

V. Torri (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a 2D mathematical model describing the motion of a solution of surfactants submitted to a high shear stress in a Couette-Taylor system. We are interested in a stabilization process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists global in time solution for small initial data and that the solution of the linearized system (controlled by a nonconstant parameter) tends to 0 as t goes to infinity. This explains rigorously some experiments. ...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h , the L surface concentrations c i s in lithology i of the sediments at the top...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h, the L surface concentrations c i s in lithology i of the sediments at the...

Mathematical and numerical analysis of an alternative well-posed two-layer turbulence model

Bijan Mohammadi, Guillaume Puigt (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical aspects...

Mathematical and Numerical Analysis of an Alternative Well-Posed Two-Layer Turbulence Model

Bijan Mohammadi, Guillaume Puigt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical...

Mathematical and numerical modeling of early atherosclerotic lesions***

Vincent Calvez, Jean Gabriel Houot, Nicolas Meunier, Annie Raoult, Gabriela Rusnakova (2010)

ESAIM: Proceedings

This article is devoted to the construction of a mathematical model describing the early formation of atherosclerotic lesions. The early stage of atherosclerosis is an inflammatory process that starts with the penetration of low density lipoproteins in the intima and with their oxidation. This phenomenon is closely linked to the local blood flow dynamics. Extending a previous work [5] that was mainly restricted to a one-dimensional setting, we couple...

Mathematical and numerical studies of non linear ferromagnetic materials

Patrick Joly, Olivier Vacus (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in the numerical modeling of absorbing ferromagnetic materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based on an appropriate modification of Yee's scheme, that we show to preserve some important properties of the continuous...

Currently displaying 1541 – 1560 of 3679