Displaying 21 – 40 of 125

Showing per page

Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers

Sébastien Benzekry (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a phenomenological model for anti-angiogenic therapy in the treatment of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition describing the evolution of the density of metastases that we analyze first at the continuous level. We present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence establishes existence of solutions. Then we prove an error estimate and use the model to perform interesting simulations...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h , the L surface concentrations c i s in lithology i of the sediments at the top...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h, the L surface concentrations c i s in lithology i of the sediments at the...

Mathematical and numerical analysis of an alternative well-posed two-layer turbulence model

Bijan Mohammadi, Guillaume Puigt (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical aspects...

Mathematical and Numerical Analysis of an Alternative Well-Posed Two-Layer Turbulence Model

Bijan Mohammadi, Guillaume Puigt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical...

Mathematical and numerical modeling of early atherosclerotic lesions***

Vincent Calvez, Jean Gabriel Houot, Nicolas Meunier, Annie Raoult, Gabriela Rusnakova (2010)

ESAIM: Proceedings

This article is devoted to the construction of a mathematical model describing the early formation of atherosclerotic lesions. The early stage of atherosclerosis is an inflammatory process that starts with the penetration of low density lipoproteins in the intima and with their oxidation. This phenomenon is closely linked to the local blood flow dynamics. Extending a previous work [5] that was mainly restricted to a one-dimensional setting, we couple...

Mathematical and numerical studies of non linear ferromagnetic materials

Patrick Joly, Olivier Vacus (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in the numerical modeling of absorbing ferromagnetic materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based on an appropriate modification of Yee's scheme, that we show to preserve some important properties of the continuous...

Mathematical models for laser-plasma interaction

Rémi Sentis (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical models for laser-plasma interaction

Rémi Sentis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical models of tumor growth systems

Takashi Suzuki (2012)

Mathematica Bohemica

We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.

Mathematical study of rotational incompressible non-viscous flows through multiply connected domains

Miloslav Feistauer (1981)

Aplikace matematiky

The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications...

Mathematics of Invisibility

Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, Gunther Uhlmann (2007)

Journées Équations aux dérivées partielles

We will describe recent some of the recent theoretical progress on making objects invisible to electromagnetic waves based on singular transformations.

Currently displaying 21 – 40 of 125