Displaying 521 – 540 of 712

Showing per page

Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps

Jérôme Buzzi (2010)

Annales de l’institut Fourier

Entropy-expanding transformations define a class of smooth dynamics generalizing interval maps with positive entropy and expanding maps. In this work, we build a symbolic representation of those dynamics in terms of puzzles (in Yoccoz’s sense), thus avoiding a connectedness condition, hard to satisfy in higher dimensions. Those puzzles are controled by a «constraint entropy» bounded by the hypersurface entropy of the aforementioned transformations.The analysis of those puzzles rests on a «stably...

Quasilinear waves and trapping: Kerr-de Sitter space

Peter Hintz, András Vasy (2014)

Journées Équations aux dérivées partielles

In these notes, we will describe recent work on globally solving quasilinear wave equations in the presence of trapped rays, on Kerr-de Sitter space, and obtaining the asymptotic behavior of solutions. For the associated linear problem without trapping, one would consider a global, non-elliptic, Fredholm framework; in the presence of trapping the same framework is available for spaces of growing functions only. In order to solve the quasilinear problem we thus combine these frameworks with the normally...

Quelques nouveaux invariants des difféomorphismes Morse--Smale d'une surface

Rémi Langevin (1993)

Annales de l'institut Fourier

Soit f un difféomorphisme Morse-Smale d’une surface fermée. À une courbe instable de comportement 1 par rapport à un attracteur A de f correspond une courbe fermée sur un des tores (Bassin ( A ) - A ) / ( f ) . Cette remarque nous permettra de définir de nouveaux invariants de conjugaison de f . Nous en déduisons aussi un moyen d’écrire explicitement une puissance de f comme le produit du temps 1 d’un champ de vecteurs Morse-Smale topologique par des isotopies à support des disques et des twists de Dehn de supports...

Recurrent point set of the shift on Σ and strong chaos

Lidong Wang, Gongfu Liao, Yu Yang (2002)

Annales Polonici Mathematici

Let (Σ,ϱ) be the one-sided symbolic space (with two symbols), and let σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and the set of recurrent points respectively. In this paper, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set 𝒥 satisfying 𝒥 ⊂ R(σ)-A(σ).

Regular projectively Anosov flows on three-dimensional manifolds

Masayuki Asaoka (2010)

Annales de l’institut Fourier

We give the complete classification of regular projectively Anosov flows on closed three-dimensional manifolds. More precisely, we show that such a flow must be either an Anosov flow or decomposed into a finite union of T 2 × I -models. We also apply our method to rigidity problems of some group actions.

Regular projectively Anosov flows with compact leaves

Takeo Noda (2004)

Annales de l’institut Fourier

This paper concerns projectively Anosov flows φ t with smooth stable and unstable foliations s and u on a Seifert manifold M . We show that if the foliation s or u contains a compact leaf, then the flow φ t is decomposed into a finite union of models which are defined on T 2 × I and bounded by compact leaves, and therefore the manifold M is homeomorphic to the 3-torus. In the proof, we also obtain a theorem which classifies codimension one foliations on Seifert manifolds with compact leaves which are incompressible...

Return time statistics for unimodal maps

H. Bruin, S. Vaienti (2003)

Fundamenta Mathematicae

We prove that a non-flat S-unimodal map satisfying a weak summability condition has exponential return time statistics on intervals around a.e. point. Moreover we prove that the convergence to the entropy in the Ornstein-Weiss formula enjoys normal fluctuations.

Currently displaying 521 – 540 of 712