Displaying 201 – 220 of 378

Showing per page

Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps

Antonio Garijo, Xavier Jarque, Mónica Moreno Rocha (2011)

Fundamenta Mathematicae

We consider the family of transcendental entire maps given by f a ( z ) = a ( z - ( 1 - a ) ) e x p ( z + a ) where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of f a is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing...

Non-recurrent meromorphic functions

Jacek Graczyk, Janina Kotus, Grzegorz Świątek (2004)

Fundamenta Mathematicae

We consider a transcendental meromorphic function f belonging to the class ℬ (with bounded set of singular values). We show that if the Julia set J(f) is the whole complex plane ℂ, and the closure of the postcritical set P(f) is contained in B(0,R) ∪ {∞} and is disjoint from the set Crit(f) of critical points, then every compact and forward invariant set is hyperbolic, provided that it is disjoint from Crit(f). It is further shown, under general additional hypotheses, that f admits no measurable...

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi, Laurent Stolovitch (2010)

Annales scientifiques de l'École Normale Supérieure

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there...

Normal forms of invariant vector fields under a finite group action.

Federico Sánchez-Bringas (1993)

Publicacions Matemàtiques

Let Γ be a finite subgroup of GL(n, C). This subgroup acts on the space of germs of holomorphic vector fields vanishing at the origin in Cn and on the group of germs of holomorphic diffeomorphisms of (Cn, 0). We prove a theorem of invariant conjugacy to a normal form and linearization for the subspace of invariant germs of holomorphic vector fields and we give a description of this type of normal forms in dimension n = 2.

Normalization of bundle holomorphic contractions and applications to dynamics

François Berteloot, Christophe Dupont, Laura Molino (2008)

Annales de l’institut Fourier

We establish a Poincaré-Dulac theorem for sequences ( G n ) n of holomorphic contractions whose differentials d 0 G n split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of k . In this context, our normalization result allows to estimate precisely the distortions of ellipsoids...

Normalization of Poincaré singularities via variation of constants.

Timoteo Carletti, Alessandro Margheri, Massimo Villarin (2005)

Publicacions Matemàtiques

We present a geometric proof of the Poincaré-Dulac Normalization Theorem for analytic vector fields with singularities of Poincaré type. Our approach allows us to relate the size of the convergence domain of the linearizing transformation to the geometry of the complex foliation associated to the vector field.

On a general difference Galois theory I

Shuji Morikawa (2009)

Annales de l’institut Fourier

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

On a general difference Galois theory II

Shuji Morikawa, Hiroshi Umemura (2009)

Annales de l’institut Fourier

We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.

On a theorem of Rees-Shishikura

Guizhen Cui, Wenjuan Peng, Lei Tan (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Rees-Shishikura’s theorem plays an important role in the study of matings of polynomials. It promotes Thurston’s combinatorial equivalence into a semi-conjugacy. In this work we restate and reprove Rees-Shishikura’s theorem in a more general form, which can then be applied to a wider class of postcritically finite branched coverings. We provide an application of the restated theorem.

On an analytic approach to the Fatou conjecture

Genadi Levin (2002)

Fundamenta Mathematicae

Let f be a quadratic map (more generally, f ( z ) = z d + c , d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series n 0 1 / ( f ) ' ( c ) converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.

On backward stability of holomorphic dynamical systems

Genadi. Levin (1998)

Fundamenta Mathematicae

For a polynomial with one critical point (maybe multiple), which does not have attracting or neutral periodic orbits, we prove that the backward dynamics is stable provided the Julia set is locally connected. The latter is proved to be equivalent to the non-existence of a wandering continuum in the Julia set or to the shrinking of Yoccoz puzzle-pieces to points.

On biaccessible points in Julia sets of polynomials

Anna Zdunik (2000)

Fundamenta Mathematicae

Let f be a polynomial of one complex variable so that its Julia set is connected. We show that the harmonic (Brolin) measure of the set of biaccessible points in J is zero except for the case when J is an interval.

On commuting polynomial automorphisms of C2.

Cinzia Bisi (2004)

Publicacions Matemàtiques

We charocterize the commuting polynomial automorphisms of C2, using their meromorphic extension to P2 and looking at their dynamics on the line at infinity.

On complexification and iteration of quasiregular polynomials which have algebraic degree two

Ewa Ligocka (2005)

Fundamenta Mathematicae

We prove that each degree two quasiregular polynomial is conjugate to Q(z) = z² - (p+q)|z|² + pqz̅² + c, |p| < 1, |q| < 1. We also show that the complexification of Q can be extended to a polynomial endomorphism of ℂℙ² which acts as a Blaschke product (z-p)/(1-p̅z) · (z-q)/(1-q̅z) on ℂℙ²∖ℂ². Using this fact we study the dynamics of Q under iteration.

On dicritical foliations and Halphen pencils

Luís Gustavo Mendes, Paulo Sad (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The aim of this article is to provide information on the number and on the geometrical position of singularities of holomorphic foliations of the projective plane. As an application it is shown that certain foliations are in fact Halphen pencils of elliptic curves. The results follow from Miyaoka’s semipositivity theorem, combined with recent developments on the birational geometry of foliations.

On Fatou-Julia decompositions

Taro Asuke (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

We propose a Fatou-Julia decomposition for holomorphic pseudosemigroups. It will be shown that the limit sets of finitely generated Kleinian groups, the Julia sets of mapping iterations and Julia sets of complex codimension-one regular foliations can be seen as particular cases of the decomposition. The decomposition is applied in order to introduce a Fatou-Julia decomposition for singular holomorphic foliations. In the well-studied cases, the decomposition behaves as expected.

On fixed points of holomorphic type

Ewa Ligocka (2002)

Colloquium Mathematicae

We study a linearization of a real-analytic plane map in the neighborhood of its fixed point of holomorphic type. We prove a generalization of the classical Koenig theorem. To do that, we use the well known results concerning the local dynamics of holomorphic mappings in ℂ².

Currently displaying 201 – 220 of 378