Displaying 2101 – 2120 of 3166

Showing per page

Property ( 𝐰𝐋 ) and the reciprocal Dunford-Pettis property in projective tensor products

Ioana Ghenciu (2015)

Commentationes Mathematicae Universitatis Carolinae

A Banach space X has the reciprocal Dunford-Pettis property ( R D P P ) if every completely continuous operator T from X to any Banach space Y is weakly compact. A Banach space X has the R D P P (resp. property ( w L ) ) if every L -subset of X * is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product X π Y has property ( w L ) when X has the R D P P , Y has property ( w L ) , and L ( X , Y * ) = K ( X , Y * ) .

Property (wM*) and the unconditional metric compact approximation property

Ăsvald Lima (1995)

Studia Mathematica

The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.

Propriétés géométriques de h p ( 𝔻 , X ) et généralisations

Mohammad Daher (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Nous montrons que h 2 ( 𝔻 , L 1 ( 𝕋 ) ) admet une norme équivalente L U R , ce qui répond négativement à une question de Dowling, Hu et Smith. Puis nous obtenons une propriété de stabilité des opérateurs de Radon-Nikodym analytique. Motivés par l’identification entre h p ( 𝔻 , X ) et V B p ( 𝕋 , X ) X est un espace de Banach, pour un groupe abélien compact métrisable G , son dual Γ , et Λ 2 Λ 1 Γ , nous prouvons que, si l’espace V B Λ 1 p ( G , X ) / V B Λ 2 p ( G , X ) a la propriété K a d e c - K l e e - β - ω , alors il coincïde avec L Λ 1 p ( G , X ) / L Λ 2 p ( G , X ) , ...

Proximal normal structure and relatively nonexpansive mappings

A. Anthony Eldred, W. A. Kirk, P. Veeramani (2005)

Studia Mathematica

The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that...

Pseudocomplémentation dans les espaces de Banach

Patric Rauch (1991)

Studia Mathematica

This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of L ¹ are characterized and, in L p with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation...

Currently displaying 2101 – 2120 of 3166