Properties of typical bounded closed convex sets in Hilbert space.
A Banach space has the reciprocal Dunford-Pettis property () if every completely continuous operator from to any Banach space is weakly compact. A Banach space has the (resp. property ) if every -subset of is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product has property when has the , has property , and .
The main objective of this paper is to give a simple proof for a larger class of spaces of the following theorem of Kalton and Werner. (a) X has property (M*), and (b) X has the metric compact approximation property Our main tool is a new property (wM*) which we show to be closely related to the unconditional metric approximation property.
Nous montrons que admet une norme équivalente ce qui répond négativement à une question de Dowling, Hu et Smith. Puis nous obtenons une propriété de stabilité des opérateurs de Radon-Nikodym analytique. Motivés par l’identification entre et où est un espace de Banach, pour un groupe abélien compact métrisable , son dual , et , nous prouvons que, si l’espace a la propriété , alors il coincïde avec
The notion of proximal normal structure is introduced and used to study mappings that are "relatively nonexpansive" in the sense that they are defined on the union of two subsets A and B of a Banach space X and satisfy ∥ Tx-Ty∥ ≤ ∥ x-y∥ for all x ∈ A, y ∈ B. It is shown that if A and B are weakly compact and convex, and if the pair (A,B) has proximal normal structure, then a relatively nonexpansive mapping T: A ∪ B → A ∪ B satisfying (i) T(A) ⊆ B and T(B) ⊆ A, has a proximal point in the sense that...
This paper introduces the following definition: a closed subspace Z of a Banach space E is pseudocomplemented in E if for every linear continuous operator u from Z to Z there is a linear continuous extension ū of u from E to E. For instance, every subspace complemented in E is pseudocomplemented in E. First, the pseudocomplemented hilbertian subspaces of are characterized and, in with p in [1, + ∞[, classes of closed subspaces in which the notions of complementation and pseudocomplementation...
We characterize the reflexivity of the completed projective tensor products of Banach spaces in terms of certain approximative biorthogonal systems.