Displaying 81 – 100 of 334

Showing per page

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains

Mehmet Çelik, Yunus E. Zeytuncu (2017)

Czechoslovak Mathematical Journal

On complete pseudoconvex Reinhardt domains in 2 , we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in 2 that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite...

Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on a class of unbounded complete Reinhardt domains

Le He, Yanyan Tang (2024)

Czechoslovak Mathematical Journal

We consider a class of unbounded nonhyperbolic complete Reinhardt domains D n , m , k μ , p , s : = ( z , w 1 , , w m ) n × k 1 × × k m : w 1 2 p 1 e - μ 1 z s + + w m 2 p m e - μ m z s < 1 , where s , p 1 , , p m , μ 1 , , μ m are positive real numbers and n , k 1 , , k m are positive integers. We show that if a Hankel operator with anti-holomorphic symbol is Hilbert-Schmidt on the Bergman space A 2 ( D n , m , k μ , p , s ) , then it must be zero. This gives an example of high dimensional unbounded complete Reinhardt domain that does not admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols.

Index and dynamics of quantized contact transformations

Steven Zelditch (1997)

Annales de l'institut Fourier

Quantized contact transformations are Toeplitz operators over a contact manifold ( X , α ) of the form U χ = Π A χ Π , where Π : H 2 ( X ) L 2 ( X ) is a Szegö projector, where χ is a contact transformation and where A is a pseudodifferential operator over X . They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine ind ( U χ ) when the principal symbol is unitary, or equivalently to determine...

Inverse du Laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle

Jean Chanzy (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....

Inversion d’un opérateur de Toeplitz tronqué à symbole matriciel et théorèmes-limite de Szegö

Jean Chanzy (2006)

Annales mathématiques Blaise Pascal

Ce travail est une étude théorique d’opérateurs de Toeplitz dont le symbole est une fonction matricielle régulière définie positive partout sur le tore à une dimension. Nous proposons d’abord une formule d’inversion exacte pour un opérateur de Toeplitz à symbole matriciel, démontrée au moyen d’un théorème établi en annexe et donnant la solution du problème de la prédiction relatif à un passé fini pour un processus stationnaire du second ordre. Nous établissons ensuite, à partir de cet inverse, un...

Isospectrality for quantum toric integrable systems

Laurent Charles, Álvaro Pelayo, San Vũ Ngoc (2013)

Annales scientifiques de l'École Normale Supérieure

We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of...

Kernels of Toeplitz operators on the Bergman space

Young Joo Lee (2023)

Czechoslovak Mathematical Journal

A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space.

Lifting properties, Nehari theorem and Paley lacunary inequality.

Mischa Cotlar, Cora Sadosky (1986)

Revista Matemática Iberoamericana

A general notion of lifting properties for families of sesquilinear forms is formulated. These lifting properties, which appear as particular cases in many classical interpolation problems, are studied for the Toeplitz kernels in Z, and applied for refining and extending the Nehari theorem and the Paley lacunary inequality.

Local Toeplitz operators based on wavelets: phase space patterns for rough wavelets

Krzysztof Nowak (1996)

Studia Mathematica

We consider two standard group representations: one acting on functions by translations and dilations, the other by translations and modulations, and we study local Toeplitz operators based on them. Local Toeplitz operators are the averages of projection-valued functions g P g , ϕ , where for a fixed function ϕ, P g , ϕ denotes the one-dimensional orthogonal projection on the function U g ϕ , U is a group representation and g is an element of the group. They are defined as integrals ʃ W P g , ϕ d g , where W is an open, relatively...

Currently displaying 81 – 100 of 334