A generalized differential of real functionals.
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic...
In this note we provide a new geometric lower bound on the so-called Grad’s number of a domain in terms of how far is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
In this note we provide a new geometric lower bound on the so-called Grad's number of a domain Ω in terms of how far Ω is from being axisymmetric. Such an estimate is important in the study of the trend to equilibrium for the Boltzmann equation for dilute gases.
In this paper, a new hybrid simulated annealing algorithm for constrained global optimization is proposed. We have developed a stochastic algorithm called ASAPSPSA that uses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to the basic simulated annealing algorithm (SA) that gives the region containing the global solution of an objective function. In addition, Simultaneous Perturbation Stochastic Approximation (SPSA)...
Let be a minimum for where f is convex, is convex for a.e. x. We prove that u shares the same modulus of continuity of ϕ whenever Ω is sufficiently regular, the right derivative of g satisfies a suitable monotonicity assumption and the following inequality holds This result generalizes the classical Haar-Rado theorem for Lipschitz functions.
Let be a minimum for where f is convex, is convex for a.e. x. We prove that u shares the same modulus of continuity of ϕ whenever Ω is sufficiently regular, the right derivative of g satisfies a suitable monotonicity assumption and the following inequality holds This result generalizes the classical Haar-Rado theorem for Lipschitz functions.