Stabilité isopérimétrique
The isoperimetric inequality for Steiner symmetrization of any codimension is investigated and the equality cases are characterized. Moreover, a quantitative version of this inequality is proven for convex sets.
On montre que, sur une surface riemannienne compacte, le profil isopérimétrique admet un développement limité à l’ordre en . Lorsque la métrique est analytique, le profil est semi-analytique. Il existe des métriques lisses sur la -sphère dont le profil n’est pas de classe au voisinage de .
The irrigation problem is the problem of finding an efficient way to transport a measure μ+ onto a measure μ-. By efficient, we mean that a structure that achieves the transport (which, following [Bernot, Caselles and Morel, Publ. Mat.49 (2005) 417–451], we call traffic plan) is better if it carries the mass in a grouped way rather than in a separate way. This is formalized by considering costs functionals that favorize this property. The aim of this paper is to introduce a dynamical cost functional...
Let be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its -homology group has notorsion. Weak limits of graphs of smooth maps with equibounded total variation give riseto equivalence classes of cartesian currents in for which we introduce a natural-energy.Assume moreover that the first homotopy group of iscommutative. In any dimension we prove that every element in can be approximatedweakly in the sense of currents by a sequence of graphs...
In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.