Metrische Zusammenhänge und Torsion bei einfachen p-Vektoren.
We approximate, in the sense of Γ-convergence, free-discontinuity functionals with linear growth in the gradient by a sequence of non-local integral functionals depending on the average of the gradients on small balls. The result extends to higher dimension what we already proved in the one-dimensional case.
In [Progress Math.233 (2005)], David suggested the existence of a new type of global minimizers for the Mumford-Shah functional in . The singular set of such a new minimizer belongs to a three parameters family of sets . We first derive necessary conditions satisfied by global minimizers of this family. Then we are led to study the first eigenvectors of the Laplace-Beltrami operator with Neumann boundary conditions on subdomains of with three reentrant corners. The necessary conditions are...
We present here our most recent results ([1def]) about the definition of non-linear Weiertrass-type integrals over BV varieties, possibly discontinuous and not necessarily Sobolev's.
Given a bounded open set in (or in a Riemannian manifold) and a partition of by open sets , we consider the quantity where is the ground state energy of the Dirichlet realization of the Laplacian in . If we denote by the infimum over all the -partitions of , a minimal -partition is then a partition which realizes the infimum. When , we find the two nodal domains of a second eigenfunction, but the analysis of higher ’s is non trivial and quite interesting. In this paper, we give...
We state and prove a Korn-like inequality for a vector field in a bounded open set of , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case are...
We state and prove a Korn-like inequality for a vector field in a bounded open set of , satisfying a tangency boundary condition. This inequality, which is crucial in our study of the trend towards equilibrium for dilute gases, holds true if and only if the domain is not axisymmetric. We give quantitative, explicit estimates on how the departure from axisymmetry affects the constants; a Monge–Kantorovich minimization problem naturally arises in this process. Variants in the axisymmetric case...
Mixtures are convex combinations of laws. Despite this simple definition, a mixture can be far more subtle than its mixed components. For instance, mixing gaussian laws may produce a potential with multiple deep wells. We study in the present work fine properties of mixtures with respect to concentration of measure and Sobolev type functional inequalities. We provide sharp Laplace bounds for Lipschitz functions in the case of generic mixtures, involving a transportation cost diameter of the mixed...
We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional . The proofs are based on arguments from the theory of Young measures.