Regularity results for minimizing currents with a free boundary.
A phase field approach for structural topology optimization which allows for topology changes and multiple materials is analyzed. First order optimality conditions are rigorously derived and it is shown via formally matched asymptotic expansions that these conditions converge to classical first order conditions obtained in the context of shape calculus. We also discuss how to deal with triple junctions where e.g. two materials and the void meet. Finally, we present several numerical results for...
This article studies an integral representation of functionals of linear growth on metric measure spaces with a doubling measure and a Poincaré inequality. Such a functional is defined via relaxation, and it defines a Radon measure on the space. For the singular part of the functional, we get the expected integral representation with respect to the variation measure. A new feature is that in the representation for the absolutely continuous part, a constant appears already in the weighted Euclidean...
In the framework of the linear fracture theory, a commonly-used tool to describe the smooth evolution of a crack embedded in a bounded domain Ω is the so-called energy release rate defined as the variation of the mechanical energy with respect to the crack dimension. Precisely, the well-known Griffith's criterion postulates the evolution of the crack if this rate reaches a critical value. In this work, in the anti-plane scalar case, we consider the shape design problem which consists in optimizing...
In this paper we study the lower semicontinuous envelope with respect to the -topology of a class of isotropic functionals with linear growth defined on mappings from the -dimensional ball into that are constrained to take values into a smooth submanifold of .
In this paper we study the lower semicontinuous envelope with respect to the L1-topology of a class of isotropic functionals with linear growth defined on mappings from the n-dimensional ball into that are constrained to take values into a smooth submanifold of .
The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical examples...
The gradient based topological optimization tools introduced during the last ten years tend naturally to modify the topology of a domain by creating small holes inside the domain. Once these holes have been created, they usually remain unchanged, at least during the topological phase of the optimization algorithm. In this paper, a new asymptotic expansion is introduced which allows to decide whether an existing hole must be removed or not for improving the cost function. Then, two numerical...
The Euler−Poinsot rigid body motion is a standard mechanical system and it is a model for left-invariant Riemannian metrics on SO(3). In this article using the Serret−Andoyer variables we parameterize the solutions and compute the Jacobi fields in relation with the conjugate locus evaluation. Moreover, the metric can be restricted to a 2D-surface, and the conjugate points of this metric are evaluated using recent works on surfaces of revolution. Another related 2D-metric on S2 associated to the...