Displaying 681 – 700 of 842

Showing per page

Symmetries and currents in nonholonomic mechanics

Michal Čech, Jana Musilová (2014)

Communications in Mathematics

In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory...

Symmetry of minimizers with a level surface parallel to the boundary

Giulio Ciraolo, Rolando Magnanini, Shigeru Sakaguchi (2015)

Journal of the European Mathematical Society

We consider the functional Ω ( v ) = Ω [ f ( | D v | ) - v ] d x , where Ω is a bounded domain and f is a convex function. Under general assumptions on f , Crasta [Cr1] has shown that if Ω admits a minimizer in W 0 1 , 1 ( Ω ) depending only on the distance from the boundary of Ω , then Ω must be a ball. With some restrictions on f , we prove that spherical symmetry can be obtained only by assuming that the minimizer has one level surface parallel to the boundary (i.e. it has only a level surface in common with the distance). We then discuss how these...

Synchronized traffic plans and stability of optima

Marc Bernot, Alessio Figalli (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The irrigation problem is the problem of finding an efficient way to transport a measure μ+ onto a measure μ-. By efficient, we mean that a structure that achieves the transport (which, following [Bernot, Caselles and Morel, Publ. Mat.49 (2005) 417–451], we call traffic plan) is better if it carries the mass in a grouped way rather than in a separate way. This is formalized by considering costs functionals that favorize this property. The aim of this paper is to introduce a dynamical cost functional...

Tangency properties of sets with finite geometric curvature energies

Sebastian Scholtes (2012)

Fundamenta Mathematicae

We investigate tangential regularity properties of sets of fractal dimension, whose inverse thickness or integral Menger curvature energies are bounded. For the most prominent of these energies, the integral Menger curvature p α ( X ) : = X X X κ p ( x , y , z ) d X α ( x ) d X α ( y ) d X α ( z ) , where κ(x,y,z) is the inverse circumradius of the triangle defined by x,y and z, we find that p α ( X ) < for p ≥ 3α implies the existence of a weak approximate α-tangent at every point of the set, if some mild density properties hold. This includes the scale invariant case p = 3 for...

The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries

Frank Müller (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.

The BV-energy of maps into a manifold : relaxation and density results

Mariano Giaquinta, Domenico Mucci (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let  𝒴   be a smooth compact oriented riemannian manifoldwithout boundary, and assume that its 1 -homology group has notorsion. Weak limits of graphs of smooth maps  u k : B n 𝒴   with equibounded total variation give riseto equivalence classes of cartesian currents in  cart 1 , 1 ( B n 𝒴 )   for which we introduce a natural B V -energy.Assume moreover that the first homotopy group of   𝒴   iscommutative. In any dimension   n   we prove that every element  T   in   cart 1 , 1 ( B n 𝒴 )   can be approximatedweakly in the sense of currents by a sequence of graphs...

The Curvature of a Set with Finite Area

Elisabetta Barozzi (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In a paper, by myself, E. Gonzalez and I. Tamanini (see [2]), it was proven that all sets of finite perimeter do have a non trivial variational property, connected with the mean curvature of their boundaries. In the present article, that variational property is made more precise.

Currently displaying 681 – 700 of 842