Displaying 61 – 80 of 119

Showing per page

On the hessian of the optimal transport potential

Stefán Ingi Valdimarsson (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the optimal solution of the Monge-Kantorovich mass transport problem between measures whose density functions are convolution with a gaussian measure and a log-concave perturbation of a different gaussian measure. Under certain conditions we prove bounds for the Hessian of the optimal transport potential. This extends and generalises a result of Caffarelli. We also show how this result fits into the scheme of Barthe to prove Brascamp-Lieb inequalities and thus prove a new generalised Reverse...

On the normal variations of a domain

D. Bresch, J. Simon (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In domain optimization problems, normal variations of a reference domain are frequently used. We prove that such variations do not preserve the regularity of the domain. More precisely, we give a bounded domain which boundary is m times differentiable and a scalar variation which is infinitely differentiable such that the deformed boundary is only m-1 times differentiable. We prove in addition that the only normal variations which preserve the regularity are those with constant magnitude. This...

On the numerical solution of axisymmetric domain optimization problems

Ivan Hlaváček, Raino Mäkinen (1991)

Applications of Mathematics

An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.

On the optimization of initial conditions for a model parameter estimation

Matonoha, Ctirad, Papáček, Štěpán, Kindermann, Stefan (2017)

Programs and Algorithms of Numerical Mathematics

The design of an experiment, e.g., the setting of initial conditions, strongly influences the accuracy of the process of determining model parameters from data. The key concept relies on the analysis of the sensitivity of the measured output with respect to the model parameters. Based on this approach we optimize an experimental design factor, the initial condition for an inverse problem of a model parameter estimation. Our approach, although case independent, is illustrated at the FRAP (Fluorescence...

On the Representation of Effective Energy Densities

Christopher J. Larsen (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the question raised in [1] of whether relaxed energy densities involving both bulk and surface energies can be written as a sum of two functions, one depending on the net gradient of admissible functions, and the other on net singular part. We show that, in general, they cannot. In particular, if the bulk density is quasiconvex but not convex, there exists a convex and homogeneous of degree 1 function of the jump such that there is no such representation.

Currently displaying 61 – 80 of 119