Total Absolute Curvature of Submanifolds in Compact Symmetric Spaces of Rank One.
We study totally contact umbilical screen-slant lightlike submanifolds and totally contact umbilical screen-transversal lightlike submanifolds of an indefinite Kenmotsu manifold. We prove a characterization theorem of totally contact umbilical screen-slant lightlike submanifolds of an indefinite Kenmotsu manifold. We further prove some results on a totally contact umbilical radical screen-transversal lightlike submanifold of an indefinite Kenmotsu manifold, such as the necessary and sufficient conditions...
We prove some pinching theorems with respect to the scalar curvature of 4-dimensional conformally flat (concircularly flat, quasi-conformally flat) totally real minimal submanifolds in QP⁴(c).
Given that a connected Lie group with nilpotent radical acts transitively by isometries on a connected Riemannian manifold , the structure of the full connected isometry group of and the imbedding of in are described. In particular, if equals its derived subgroup and its Levi factors are of noncompact type, then is normal in . In the special case of a simply transitive action of on , a transitive normal subgroup of is constructed with and a sufficient condition is given...
Dans ces notes il sera expliqué que la propriété est vérifiée par le groupe de Heisenberg muni de la distance de Carnot-Carathéodory et de la mesure de Lebesgue. Cette propriété correspond pour les espaces métriques mesurés à une courbure de Ricci positive. Comme application, les mesures interpolées par transport de mesure sont absolument continues. En revanche, la courbure-dimension , une autre courbure de Ricci synthétique adaptée aux espaces métriques mesurés est fausse pour .
Des liens inattendus ont été récemment mis à jour entre le transport optimal de Monge–Kantorovich et certains problèmes de géométrie riemannienne, en liaison avec la courbure de Ricci. Une des retombées de ces interactions est la naissance d’une théorie “synthétique” des espaces métriques mesurés à courbure de Ricci minorée, venant compléter la théorie classique des espaces métriqes à courbure sectionnelle minorée. Dans ce texte (également fourni aux actes du Séminaire de Théorie Spectrale et Géométrie...
In this paper, we prove two generalized versions of the Cheeger-Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curavture on complete Riemannian manifolds.