The deformation theory of anti-self-dual conformal structures.
For at least 3, the Dehn functions of and are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for bigger than 3 to the case . In this note we give a shorter, more direct proof of this last reduction.
Let be a real submanifold of an almost complex manifold and let be the maximal holomorphic subspace, for each . We prove that , is upper-semicontinuous.
We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.
Restricting his considerations to the Euclidean plane, the author shows a method leading to the solution of the equivalence problem for all Lie groups of motions. Further, he presents all transitive one-parametric system of motions in the Euclidean plane.
TheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl0(E) → End(TM) mapping Ʌ2E into skew-symmetric endomorphisms, and the existence of a metric connection on E compatible with φ. We give an explicit description of such a vector bundle E as a sub-bundle of End(TM)....