Existence of -almost tangent structures
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) -dimensional symplectic manifolds endowed with a -tamed almost complex structure and with a nowhere vanishing and normalized section of the bundle satisfying the condition .We study the moduli space of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that is non obstructed. Finally, we present several examples of QIS manifolds.
Let be a noncompact differentiable manifold and an open proper submanifold endowed with a complete Riemannian metric . We prove that can be extended all over to a complete Riemannian metric having the same growth-type as .
These are expository notes from the 2008 Srní Winter School. They have two purposes: (1) to give a quick introduction to exterior differential systems (EDS), which is a collection of techniques for determining local existence to systems of partial differential equations, and (2) to give an exposition of recent work (joint with C. Robles) on the study of the Fubini-Griffiths-Harris rigidity of rational homogeneous varieties, which also involves an advance in the EDS technology.