Existence of compact quotients of homogeneous spaces, measurably proper actions, and decay of matrix coefficients
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) -dimensional symplectic manifolds endowed with a -tamed almost complex structure and with a nowhere vanishing and normalized section of the bundle satisfying the condition .We study the moduli space of QIS deformations of a given Calabi-Yau manifold, computing its tangent space and showing that is non obstructed. Finally, we present several examples of QIS manifolds.