Displaying 101 – 120 of 122

Showing per page

Foliations with complex leaves

Giuliana Gigante, Giuseppe Tomassini (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let X be a smooth foliation with complex leaves and let D be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space X , D . In particular we concentrate on the following two themes: function theory for the algebra D X and cohomology with values in D .

Formality and the Lefschetz property in symplectic and cosymplectic geometry

Giovanni Bazzoni, Marisa Fernández, Vicente Muñoz (2015)

Complex Manifolds

We review topological properties of Kähler and symplectic manifolds, and of their odd-dimensional counterparts, coKähler and cosymplectic manifolds. We focus on formality, Lefschetz property and parity of Betti numbers, also distinguishing the simply-connected case (in the Kähler/symplectic situation) and the b1 = 1 case (in the coKähler/cosymplectic situation).

Frobenius algebras and skein modules of surfaces in 3-manifolds

Uwe Kaiser (2009)

Banach Center Publications

For each (commutative) Frobenius algebra there is defined a skein module of surfaces embedded in a given 3-manifold and bounding a prescribed curve system in the boundary. The skein relations are local and generate the kernel of a certain natural extension of the corresponding topological quantum field theory. In particular the skein module of the 3-ball is isomorphic to the ground ring of the Frobenius algebra. We prove a presentation theorem for the skein module with generators incompressible...

Currently displaying 101 – 120 of 122