Displaying 141 – 160 of 253

Showing per page

PDE's for the Dyson, Airy and Sine processes

Mark Adler (2005)

Annales de l’institut Fourier

In 1962, Dyson showed that the spectrum of a n × n random Hermitian matrix, whose entries (real and imaginary) diffuse according to n 2 independent Ornstein-Uhlenbeck processes, evolves as n non-colliding Brownian particles held together by a drift term. When n , the largest eigenvalue, with time and space properly rescaled, tends to the so-called Airy process, which is a non-markovian continuous stationary process. Similarly the eigenvalues in the bulk, with a different time and space rescaling, tend...

Pénalisations de l’araignée brownienne

Joseph Najnudel (2007)

Annales de l’institut Fourier

Dans cet article, nous pénalisons la loi d’une araignée brownienne ( A t ) t 0 prenant ses valeurs dans un ensemble fini E de demi-droites concourantes, avec un poids égal à 1 Z t exp ( α N t X t + γ L t ) , où t est un réel positif, ( α k ) k E une famille de réels indexés par E , γ un paramètre réel, X t la distance de A t à l’origine, N t ( E ) la demi-droite sur laquelle se trouve A t , L t le temps local de ( X s ) 0 s t à l’origine, et Z t la constante de normalisation. Nous montrons que la famille des mesures de probabilité obtenue par ces pénalisations converge vers...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2012)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

Annales de l'I.H.P. Probabilités et statistiques

Let X be a one-dimensional positive recurrent diffusion with initial distribution ν and invariant probability μ. Suppose that for some p>1, ∃a∈ℝ such that ∀x∈ℝ, and , where Ta is the hitting time of a. For such a diffusion, we derive non-asymptotic deviation bounds of the form ℙν(|(1/t)∫0tf(Xs) ds−μ(f)|≥ε)≤K(p)(1/tp/2)(1/εp)A(f)p. Here f bounded or bounded and compactly supported and A(f)=‖f‖∞ when f is bounded and A(f)=μ(|f|) when f is bounded and compactly supported. We also give, under...

Polynomial deviation bounds for recurrent Harris processes having general state space

Eva Löcherbach, Dasha Loukianova (2013)

ESAIM: Probability and Statistics

Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous...

Problèmes de recouvrement et points exceptionnels pour la marche aléatoire et le mouvement brownien

Zhan Shi (2004/2005)

Séminaire Bourbaki

La marche aléatoire (ou marche au hasard) est un objet fondamental de la théorie des probabilités. Un des problèmes les plus intéressants pour la marche aléatoire (ainsi que pour le mouvement brownien, son analogue dans un contexte continu) est de savoir comment elle recouvre des ensembles où se trouvent les points qui sont souvent (ou au contraire, rarement) visités, et combien il y a de tels points. Les travaux de Dembo, Peres, Rosen et Zeitouni permettent de résoudre plusieurs conjectures importantes...

Random paths with bounded local time

Itai Benjamini, Nathanaël Berestycki (2010)

Journal of the European Mathematical Society

We consider one-dimensional Brownian motion conditioned (in a suitable sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.58... as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). We also study the random walk case and show that the process...

Random walk local time approximated by a brownian sheet combined with an independent brownian motion

Endre Csáki, Miklós Csörgő, Antónia Földes, Pál Révész (2009)

Annales de l'I.H.P. Probabilités et statistiques

Let ξ(k, n) be the local time of a simple symmetric random walk on the line. We give a strong approximation of the centered local time process ξ(k, n)−ξ(0, n) in terms of a brownian sheet and an independent Wiener process (brownian motion), time changed by an independent brownian local time. Some related results and consequences are also established.

Regular potentials of additive functionals in semidynamical systems

Nedra Belhaj Rhouma, Mounir Bezzarga (2004)

Commentationes Mathematicae Universitatis Carolinae

We consider a semidynamical system ( X , , Φ , w ) . We introduce the cone 𝔸 of continuous additive functionals defined on X and the cone 𝒫 of regular potentials. We define an order relation “ ” on 𝔸 and a specific order “ ” on 𝒫 . We will investigate the properties of 𝔸 and 𝒫 and we will establish the relationship between the two cones.

Régularité Besov-Orlicz du temps local Brownien

Yue Hu, Mohamed Mellouk (2000)

Studia Mathematica

Let ( B t , t [ 0 , 1 ] ) be a linear Brownian motion starting from 0 and denote by ( L t ( x ) , t 0 , x ) its local time. We prove that the spatial trajectories of the Brownian local time have the same Besov-Orlicz regularity as the Brownian motion itself (i.e. for all t>0, a.s. the function x L t ( x ) belongs to the Besov-Orlicz space B M 2 , 1 / 2 with M 2 ( x ) = e | x | 2 - 1 ). Our result is optimal.

Currently displaying 141 – 160 of 253