On stability of spline difference scheme for reaction-diffusion time-dependent singularly perturbed problem.
In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This last...
In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This...
We investigate the approximation of the evolution of compact hypersurfaces of depending, not only on terms of curvature of the surface, but also on non local terms such as the measure of the set enclosed by the surface.
We investigate the approximation of the evolution of compact hypersurfaces of depending, not only on terms of curvature of the surface, but also on non local terms such as the measure of the set enclosed by the surface.
We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the norm. We prove optimal order a priori error estimates in the and norms, under mild mesh conditions for two and three space dimensions.
We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the L2 norm. We prove optimal order a priori error estimates in the L2 and H1 norms, under mild mesh conditions for two and three space dimensions.
In this paper we mathematically analyse an evolution variational inequality which formulates the double critical-state model for type-II superconductivity in 3D space and propose a finite element method to discretize the formulation. The double critical-state model originally proposed by Clem and Perez-Gonzalez is formulated as a model in 3D space which characterizes the nonlinear relation between the electric field, the electric current, the perpendicular component of the electric current...
Outline. In this paper I discuss some quantitative aspects related to power bounded operators T and to the decay of . For background I refer to two recent surveys J. Zemánek [1994], C. J. K. Batty [1994]. Here I try to complement these two surveys in two different directions. First, if the decay of is as fast as O(1/n) then quite strong conclusions can be made. The situation can be thought of as a discrete version of analytic semigroups; I try to motivate this in Section 1 by demonstrating the...
It is well known that in the case of constant dielectric permittivity and magnetic permeability, the electric field solving the Maxwell's equations is also a solution to the wave equation. The converse is also true under certain conditions. Here we study an intermediate situation in which the magnetic permeability is constant and a region with variable dielectric permittivity is surrounded by a region with a constant one, in which the unknown field satisfies the wave equation. In this case, such...