Displaying 201 – 220 of 1395

Showing per page

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes

Emmanuel Franck, Philippe Hoch, Pierre Navaro, Gérald Samba (2011)

ESAIM: Proceedings

A new scheme for discretizing the P1 model on unstructured polygonal meshes is proposed. This scheme is designed such that its limit in the diffusion regime is the MPFA-O scheme which is proved to be a consistent variant of the Breil-Maire diffusion scheme. Numerical tests compare this scheme with a derived GLACE scheme for the P1 system.

An asynchronous three-field domain decomposition method for first-order evolution problems

Krupička, Lukáš, Beneš, Michal (2015)

Programs and Algorithms of Numerical Mathematics

We present an asynchronous multi-domain time integration algorithm with a dual domain decomposition method for the initial boundary-value problems for a parabolic equation. For efficient parallel computing, we apply the three-field domain decomposition method with local Lagrange multipliers to ensure the continuity of the primary unknowns at the interface between subdomains. The implicit method for time discretization and the multi-domain spatial decomposition enable us to use different time steps...

An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows

Andrea Manzoni (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039–2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923–948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773–788]) to more general affine and nonaffine parametrizations (such as volume-based...

An efficient hp spectral collocation method for nonsmooth optimal control problems

Mehrnoosh Hedayati, Hojjat Ahsani Tehrani, Alireza Fakharzadeh Jahromi, Mohammad Hadi Noori Skandari, Dumitru Baleanu (2022)

Kybernetika

One of the most challenging problems in the optimal control theory consists of solving the nonsmooth optimal control problems where several discontinuities may be present in the control variable and derivative of the state variable. Recently some extended spectral collocation methods have been introduced for solving such problems, and a matrix of differentiation is usually used to discretize and to approximate the derivative of the state variable in the particular collocation points. In such methods,...

An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems

Molati, Motlatsi, Murakawa, Hideki (2017)

Proceedings of Equadiff 14

This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible...

An energy analysis of degenerate hyperbolic partial differential equations.

William J. Layton (1984)

Aplikace matematiky

An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region Ω (E) ( t u t ) t = i , j = 1 ( a i j ( x ) u x i ) x j - a 0 ( x ) u + f ( u ) , subject to the initial and boundary conditions, u = 0 on Ω and u ( x , 0 ) = u 0 . (E) is degenerate at t = 0 and thus, even in the case f 0 , time derivatives of u will blow up as t 0 . Also, in the case where f is locally Lipschitz, solutions of (E) can blow up for t > 0 in finite time. Stability and convergence of the scheme in W 2 , 1 is shown in the linear case without assuming u t t (which can blow up as t 0 is...

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment

François Bouchut, Tomás Morales de Luna (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in...

An entropy stable finite volume method for a compressible two phase model

Eduard Feireisl, Mădălina Petcu, Bangwei She (2023)

Applications of Mathematics

We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for the approximation of the system based on upwinding and artificial diffusion approaches. We prove the entropy stability of the numerical method and present several numerical experiments to support the theory.

An error estimate uniform in time for spectral Galerkin approximations for the equations for the motion of a chemical active fluid.

M. A. Rojas-Medar, S. A. Lorca (1995)

Revista Matemática de la Universidad Complutense de Madrid

We study error estimates and their convergence rates for approximate solutions of spectral Galerkin type for the equations for the motion of a viscous chemical active fluid in a bounded domain. We find error estimates that are uniform in time and also optimal in the L2-norm and H1-norm. New estimates in the H(-1)-norm are given.

An explicit modified method of characteristics for the one-dimensional nonstationary convection-diffusion problem with dominating convection

Josef Dalík, Helena Růžičková (1995)

Applications of Mathematics

We describe a numerical method for the equation u t + p u x - ε u x x = f in ( 0 , 1 ) × ( 0 , T ) with Dirichlet boundary and initial conditions which is a combination of the method of characteristics and the finite-difference method. We prove both an a priori local error-estimate of a high order and stability. Example 3.3 indicates that our approximate solutions are disturbed only by a minimal amount of the artificial diffusion.

An extension of Rothe's method to non-cylindrical domains

Komil Kuliev, Lars-Erik Persson (2007)

Applications of Mathematics

In this paper Rothe’s classical method is extended so that it can be used to solve some linear parabolic boundary value problems in non-cylindrical domains. The corresponding existence and uniqueness theorems are proved and some further results and generalizations are discussed and applied.

Currently displaying 201 – 220 of 1395