Displaying 21 – 40 of 112

Showing per page

Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes

Dana Kotorová (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this work we describe two schemes for solving level set equation in 3D with a method based on finite volumes. These schemes use the so-called dual volumes as in [Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations Algoritmy 2009 (2009), 51–60.], [Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes Journal of Computational Physics 228, 16 (2009), 5763–5786.], where they are used for the nonlinear elliptic...

Comparison of Vlasov solvers for spacecraft charging simulation

Nicolas Vauchelet, Jean-Paul Dudon, Christophe Besse, Thierry Goudon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The modelling and the numerical resolution of the electrical charging of a spacecraft in interaction with the Earth magnetosphere is considered. It involves the Vlasov-Poisson system, endowed with non standard boundary conditions. We discuss the pros and cons of several numerical methods for solving this system, using as benchmark a simple 1D model which exhibits the main difficulties of the original models.

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Compressible two-phase flows by central and upwind schemes

Smadar Karni, Eduard Kirr, Alexander Kurganov, Guergana Petrova (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Computation of bifurcated branches in a free boundary problem arising in combustion theory

Olivier Baconneau, Claude-Michel Brauner, Alessandra Lunardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a parabolic 2D Free Boundary Problem, with jump conditions at the interface. Its planar travelling-wave solutions are orbitally stable provided the bifurcation parameter u * does not exceed a critical value u * c . The latter is the limit of a decreasing sequence ( u * k ) of bifurcation points. The paper deals with the study of the 2D bifurcated branches from the planar branch, for small k. Our technique is based on the elimination of the unknown front, turning the problem into a fully nonlinear...

Computational approaches to some inverse problems from engineering practice

Vala, Jiří (2015)

Programs and Algorithms of Numerical Mathematics

Development of engineering structures and technologies frequently works with advanced materials, whose properties, because of their complicated microstructure, cannot be predicted from experience, unlike traditional materials. The quality of computational modelling of relevant physical processes, based mostly on the principles of classical thermomechanics, is conditioned by the reliability of constitutive relations, coming from simplified experiments. The paper demonstrates some possibilities of...

Computational design optimization of low-energy buildings

Vala, Jiří (2017)

Proceedings of Equadiff 14

European directives and related national technical standards force the substantial reduction of energy consumption of all types of buildings. This can be done thanks to the massive insulation and the improvement of quality of building enclosures, using the simple evaluation assuming the one-dimensional stationary heat conduction. However, recent applications of advanced materials, structures and technologies force the proper physical, mathematical and computational analysis coming from the thermodynamic...

Computational technique for treating the nonlinear Black-Scholes equation with the effect of transaction costs

Hitoshi Imai, Naoyuki Ishimura, Hideo Sakaguchi (2007)

Kybernetika

We deal with numerical computation of the nonlinear partial differential equations (PDEs) of Black–Scholes type which incorporate the effect of transaction costs. Our proposed technique surmounts the difficulty of infinite domains and unbounded values of the solutions. Numerical implementation shows the validity of our scheme.

Conservation schemes for convection-diffusion equations with Robin boundary conditions

Stéphane Flotron, Jacques Rappaz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we present a numerical scheme based on a finite element method in order to solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties. In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not completely divergence-free. We establish a priori errror estimates for this scheme and we give some...

Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

Marc Wolff, Stéphane Jaouen, Lise-Marie Imbert-Gérard (2011)

ESAIM: Proceedings

We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas...

Consistency, accuracy and entropy behaviour of remeshed particle methods

Lisl Weynans, Adrien Magni (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magni devised recently...

Consistency, accuracy and entropy behaviour of remeshed particle methods

Lisl Weynans, Adrien Magni (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we analyze the consistency, the accuracy and some entropy properties of particle methods with remeshing in the case of a scalar one-dimensional conservation law. As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 51–56] we re-write particle methods with remeshing in the finite-difference formalism. This allows us to prove the consistency of these methods, and accuracy properties related to the accuracy of...

Currently displaying 21 – 40 of 112