Displaying 61 – 80 of 92

Showing per page

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive...

Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion*

Sören Bartels, Tomáš Roubíček (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful...

Time domain computational modelling of 1D arterial networks in monochorionic placentas

Victoria E. Franke, Kim H. Parker, Ling Y. Wee, Nicholas M. Fisk, Spencer J. Sherwin (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/ h p element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance....

Time domain computational modelling of 1D arterial networks in monochorionic placentas

Victoria E. Franke, Kim H. Parker, Ling Y. Wee, Nicholas M. Fisk, Spencer J. Sherwin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/hp element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance....

Time domain decomposition in final value optimal control of the Maxwell system

John E. Lagnese, G. Leugering (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...

Time Domain Decomposition in Final Value Optimal Control of the Maxwell System

John E. Lagnese, G. Leugering (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...

Time Spectral Method for Periodic and Quasi-Periodic Unsteady Computations on Unstructured Meshes

D. J. Mavriplis, Z. Yang (2011)

Mathematical Modelling of Natural Phenomena

For flows with strong periodic content, time-spectral methods can be used to obtain time-accurate solutions at substantially reduced cost compared to traditional time-implicit methods which operate directly in the time domain. However, these methods are only applicable in the presence of fully periodic flows, which represents a severe restriction for many aerospace engineering problems. This paper presents an extension of the time-spectral approach...

Time splitting for wave equations in random media

Guillaume Bal, Lenya Ryzhik (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the simplified...

Time splitting for wave equations in random media

Guillaume Bal, Lenya Ryzhik (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the...

Time-delay regularization of anisotropic diffusion and image processing

Abdelmounim Belahmidi, Antonin Chambolle (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.

Time-delay regularization of anisotropic diffusion and image processing

Abdelmounim Belahmidi, Antonin Chambolle (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.

Time-dependent electromagnetic waves in a cavity

Bo Kjellmert, Thomas Strömberg (2009)

Applications of Mathematics

The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential 𝐀 satisfying a wave equation with initial-boundary conditions. This description through 𝐀 is rigorously shown to give a unique solution of the problem and is the starting...

Transport of pollutant in shallow water : a two time steps kinetic method

Emmanuel Audusse, Marie-Odile Bristeau (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to present a finite volume kinetic method to compute the transport of a passive pollutant by a flow modeled by the shallow water equations using a new time discretization that allows large time steps for the pollutant computation. For the hydrodynamic part the kinetic solver ensures – even in the case of a non flat bottom – the preservation of the steady state of a lake at rest, the non-negativity of the water height and the existence of an entropy inequality. On an other...

Currently displaying 61 – 80 of 92