Previous Page 5

Displaying 81 – 92 of 92

Showing per page

Transport of Pollutant in Shallow Water A Two Time Steps Kinetic Method

Emmanuel Audusse, Marie-Odile Bristeau (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to present a finite volume kinetic method to compute the transport of a passive pollutant by a flow modeled by the shallow water equations using a new time discretization that allows large time steps for the pollutant computation. For the hydrodynamic part the kinetic solver ensures – even in the case of a non flat bottom – the preservation of the steady state of a lake at rest, the non-negativity of the water height and the existence of an entropy inequality. On an other...

Triangular mesh analysis with application on hip bone

Pajerová, Nikola, Linkeová, Ivana (2021)

Programs and Algorithms of Numerical Mathematics

Shape analyses and similarity measuring is a very often solved problem in computer graphics. The shape distribution approach based on shape functions is frequently used for this determination. The experience from a comparison of ball-bar standard triangular meshes was used to match hip bones triangular meshes. The aim is to find relation between similarity measures obtained by shape distributions approach.

Truncated spectral regularization for an ill-posed non-linear parabolic problem

Ajoy Jana, M. Thamban Nair (2019)

Czechoslovak Mathematical Journal

It is known that the nonlinear nonhomogeneous backward Cauchy problem u t ( t ) + A u ( t ) = f ( t , u ( t ) ) , 0 t < τ with u ( τ ) = φ , where A is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on φ and f , that a solution of the above problem satisfies an integral equation involving the spectral representation of A , which is also ill-posed. Spectral truncation is used...

Tutorials on Adaptive multiresolution for mesh refinement applied to fluid dynamics and reactive media problems

Christian Tenaud, Max Duarte (2011)

ESAIM: Proceedings

This work aims at evaluating in practical situations the capability of the mesh refinement technique based on the multiresolution adaptive method coupled with high resolution spatial and temporal approximations, to recover elementary physical mechanisms by achieving gains in both CPU time and memory use compared to single grid computations. We first present a summary of the multiresolution procedure. We then describe MR algorithms. Finally, the evaluation of the method is presented on several well...

Two methods for optical flow estimation

Frolkovič, Peter, Kleinová, Viera (2017)

Proceedings of Equadiff 14

In this paper we describe two methods for optical flow estimation between two images. Both methods are based on the backward tracking of characteristics for advection equation and the difference is on the choice of advection vector field. We present numerical experiments on 2D data of cell nucleus.

Two Numerical Methods for the elliptic Monge-Ampère equation

Jean-David Benamou, Brittany D. Froese, Adam M. Oberman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical solution of the elliptic Monge-Ampère Partial Differential Equation has been a subject of increasing interest recently [Glowinski, in 6th International Congress on Industrial and Applied Mathematics, ICIAM 07, Invited Lectures (2009) 155–192; Oliker and Prussner, Numer. Math.54 (1988) 271–293; Oberman, Discrete Contin. Dyn. Syst. Ser. B10 (2008) 221–238; Dean and Glowinski, in Partial differential equations, Comput. Methods Appl. Sci. 16 (2008) 43–63; Glowinski et al., Japan...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H . In the second step, the problem is linearized by substituting into the non-linear term, the velocity 𝐮 H computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h . This approach is motivated by the fact that,...

Two-grid finite-element schemes for the transient Navier-Stokes problem

Vivette Girault, Jacques-Louis Lions (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size H. In the second step, the problem is linearized by substituting into the non-linear term, the velocity uH computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size h. This approach is motivated by the fact that,...

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized Stokes...

Currently displaying 81 – 92 of 92

Previous Page 5