Displaying 81 – 100 of 112

Showing per page

Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

Konstantinos Chrysafinos (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE's is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions of the continuous optimality system is shown. The proof is based on stability estimates at arbitrary time...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function k ( x ) . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k ' is in B V , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a "rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion...

Convergence of Fourier spectral method for resonant long-short nonlinear wave interaction

Abdur Rashid, Shakaib Akram (2010)

Applications of Mathematics

In this paper, the evolution equations with nonlinear term describing the resonance interaction between the long wave and the short wave are studied. The semi-discrete and fully discrete Crank-Nicholson Fourier spectral schemes are given. An energy estimation method is used to obtain error estimates for the approximate solutions. The numerical results obtained are compared with exact solution and found to be in good agreement.

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin, Julien Vovelle (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial...

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L 2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of Rothe's method in Hölder spaces

Norio Kikuchi, Jozef Kačur (2003)

Applications of Mathematics

The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.

Convergence of the finite element method applied to an anisotropic phase-field model

Erik Burman, Daniel Kessler, Jacques Rappaz (2004)

Annales mathématiques Blaise Pascal

We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the H 1 -norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not...

Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems

Béla J. Szekeres, Ferenc Izsák (2017)

Applications of Mathematics

Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on 2 and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated...

Convergence Rates of the POD–Greedy Method

Bernard Haasdonk (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Iterative approximation algorithms are successfully applied in parametric approximation tasks. In particular, reduced basis methods make use of the so-called Greedy algorithm for approximating solution sets of parametrized partial differential equations. Recently, a priori convergence rate statements for this algorithm have been given (Buffa et al. 2009, Binev et al. 2010). The goal of the current study is the extension to time-dependent problems, which are typically approximated using the POD–Greedy...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition

Eliane Bécache, Jeronimo Rodríguez, Chrysoula Tsogka (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...

Currently displaying 81 – 100 of 112