Global-Local subadditive ergodic theorems and application to homogenization in elasticity
We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an initial brittle bond with their neighbors. Noninterpenetration...
We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an...
By means of the energy method we determine the behaviour of the canonical free energy of an elastic body, immersed in an environment that is thermally and mechanically passive; we use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.
We treat the problem of constructing exact theories of rods and shells for thin incompressible bodies. We employ a systematic method that consists in imposing constraints to reduce the number of degrees of freedom of each cross section to a finite number. We show that it is very difficult to produce theories that exactly preserve the incompressibility and we show that it is impossible to do so for naive theories. In particular, many exact theories have nonlocal effects.
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from is approximated by functions strongly in whenever . An example is shown of a function which is in but not in .
The Asymptotic Numerical Method (ANM) is a family of algorithms, based on computation of truncated vectorial series, for path following problems [2]. In this paper, we present and discuss some techniques to define local parameterization [4, 6, 7] in the ANM. We give some numerical comparisons of pseudo arc-length parameterization and local parameterization on non-linear elastic shells problems