A regularity criterion for the dissipative quasi-geostrophic equations
The incompressible three-dimensional Navier-Stokes equations are considered. A new regularity criterion for weak solutions is established in terms of the pressure gradient.
We consider the steady Navier-Stokes equations in a 2-dimensional unbounded multiply connected domain under the general outflow condition. Let be a 2-dimensional straight channel . We suppose that is bounded and that . Let be a Poiseuille flow in and the flux of . We look for a solution which tends to as . Assuming that the domain and the boundary data are symmetric with respect to the -axis, and that the axis intersects every component of the boundary, we have shown the existence...
For convenient adiabatic constants, existence of weak solutions to the steady compressible Navier-Stokes equations in isentropic regime in smooth bounded domains is well known. Here we present a way how to prove the same result when the bounded domains considered are Lipschitz.
In this work we will study some types of regularity properties of solutions for the geophysical model of hydrostatic Navier-Stokes equations, the so-called Primitive Equations (PE). Also, we will present some results about uniqueness and asymptotic behavior in time.
We construct an approximate Riemann solver for the isentropic Baer−Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing...
We study a depth-averaged model of gravity-driven flows made of solid grains and fluid, moving over variable basal surface. In particular, we are interested in applications to geophysical flows such as avalanches and debris flows, which typically contain both solid material and interstitial fluid. The model system consists of mass and momentum balance equations for the solid and fluid components, coupled together by both conservative and non-conservative terms involving the derivatives of the...
We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that...
The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...
The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model.5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...