Displaying 41 – 60 of 223

Showing per page

Existence for an Unsteady Fluid-Structure Interaction Problem

Céline Grandmont, Yvon Maday (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the well-posedness of an unsteady fluid-structure interaction problem. We consider a viscous incompressible flow, which is modelled by the Navier-Stokes equations. The structure is a collection of rigid moving bodies. The fluid domain depends on time and is defined by the position of the structure, itself resulting from a stress distribution coming from the fluid. The problem is then nonlinear and the equations we deal with are coupled. We prove its local solvability in time through two...

Existence globale pour un fluide inhomogène

Hammadi Abidi, Marius Paicu (2007)

Annales de l’institut Fourier

Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique B p , 1 - 1 + N p ( N ) . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour 1 < p < 2 N et l’unicité est démontrée sous l’hypothèse plus restrictive 1 < p N . Notre résultat...

Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions

Cholmin Sin, Sin-Il Ri (2022)

Mathematica Bohemica

We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided p ( x ) > 2 n / ( n + 2 ) . To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces.

Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics

Anatoli Babin, Alex Mahalov, Basil Nicolaenko (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Fast singular oscillating limits of the three-dimensional "primitive" equations of geophysical fluid flows are analyzed. We prove existence on infinite time intervals of regular solutions to the 3D "primitive" Navier-Stokes equations for strong stratification (large stratification parameter N). This uniform existence is proven for periodic or stress-free boundary conditions for all domain aspect ratios, including the case of three wave resonances which yield nonlinear " 2 1 2 dimensional" limit equations...

Fluide idéal incompressible en dimension deux autour d’un obstacle fin

Christophe Lacave (2008/2009)

Séminaire Équations aux dérivées partielles

Nous étudions le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l’obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d’Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. En utilisant des outils de l’analyse complexe, nous détaillerons le cas des fluides idéaux en dimension deux autour d’une courbe. Nous donnerons ensuite, à titre indicatif,...

Fluides incompressibles à densité variable

Raphaël Danchin (2002/2003)

Séminaire Équations aux dérivées partielles

 On généralise aux fluides incompressibles à densité variable un certain nombre de résultats bien connus pour les équations de Navier-Stokes et d’Euler incompressibles.

Fluides incompressibles horizontalement visqueux

Marius Paicu (2003)

Journées équations aux dérivées partielles

Motivé par l'étude des fluides tournants entre deux plaques, nous considérons l'équation tridimensionnelle de Navier-Stokes incompressible avec viscosité verticale nulle. Nous démontrons l'existence locale et l'unicité de la solution dans un espace critique (invariant par le changement d'échelle de l'équation). La solution est globale en temps si la donnée initiale est petite par rapport à la viscosité horizontale. Nous obtenons l'unicité de la solution dans un espace plus grand que l'espace des...

Fluids with anisotropic viscosity

Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier (2000)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Fluids with anisotropic viscosity

Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.

Currently displaying 41 – 60 of 223