Displaying 21 – 40 of 98

Showing per page

Semiclassical spectral estimates for Toeplitz operators

David Borthwick, Thierry Paul, Alejandro Uribe (1998)

Annales de l'institut Fourier

Let X be a compact Kähler manifold with integral Kähler class and L X a holomorphic Hermitian line bundle whose curvature is the symplectic form of X . Let H C ( X , ) be a Hamiltonian, and let T k be the Toeplitz operator with multiplier H acting on the space k = H 0 ( X , L k ) . We obtain estimates on the eigenvalues and eigensections of T k as k , in terms of the classical Hamilton flow of H . We study in some detail the case when X is an integral coadjoint orbit of a Lie group.

Semiclassical states for weakly coupled nonlinear Schrödinger systems

Eugenio Montefusco, Benedetta Pellacci, Marco Squassina (2008)

Journal of the European Mathematical Society

We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.

Semiclassical states of nonlinear Schrödinger equations with bounded potentials

Antonio Ambrosetti, Marino Badiale, Silvia Cingolani (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Using some perturbation results in critical point theory, we prove that a class of nonlinear Schrödinger equations possesses semiclassical states that concentrate near the critical points of the potential V .

Shape optimization problems for metric graphs

Giuseppe Buttazzo, Berardo Ruffini, Bozhidar Velichkov (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Γ):Γ ∈ 𝒜, ℋ1(Γ) = l}, where ℋ1D1,...,Dk }  ⊂ Rd . The cost functional ℰ(Γ) is the Dirichlet energy of Γ defined through the Sobolev functions on Γ vanishing on the points Di. We analyze the existence of a solution in both the families of connected sets and of metric graphs. At the end, several explicit examples are discussed.

Singleton independence

Luigi Accardi, Yukihiro Hashimoto, Nobuaki Obata (1998)

Banach Center Publications

Motivated by the central limit problem for algebraic probability spaces arising from the Haagerup states on the free group with countably infinite generators, we introduce a new notion of statistical independence in terms of inequalities rather than of usual algebraic identities. In the case of the Haagerup states the role of the Gaussian law is played by the Ullman distribution. The limit process is realized explicitly on the finite temperature Boltzmannian Fock space. Furthermore, a functional...

Solitons and Gibbs Measures for Nonlinear Schrödinger Equations

K. Kirkpatrick (2012)

Mathematical Modelling of Natural Phenomena

We review some recent results concerning Gibbs measures for nonlinear Schrödinger equations (NLS), with implications for the theory of the NLS, including stability and typicality of solitary wave structures. In particular, we discuss the Gibbs measures of the discrete NLS in three dimensions, where there is a striking phase transition to soliton-like behavior.

Currently displaying 21 – 40 of 98