Displaying 41 – 60 of 78

Showing per page

In vitro Vasculogenesis Models Revisited - Measurement of VEGF Diffusion in Matrigel

T. Miura, R. Tanaka (2009)

Mathematical Modelling of Natural Phenomena

The circulatory system is one of the first to function during development. The earliest event in the system's development is vasculogenesis, whereby vascular progeniter cells form clusters called blood islands, which later fuse to form capillary networks. There exists a very good in vitro system that mimics this process. When HUVECs (Human Umbilical Vein Endothelial Cells) are cultured on Matrigel, they spontaneously form a capillary network structure. Two theoretical models have been proposed...

Individual Cell-Based Model for In-Vitro Mesothelial Invasion of Ovarian Cancer

C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, A. Funaro (2010)

Mathematical Modelling of Natural Phenomena

In vitro transmesothelial migration assays of ovarian cancer cells, isolated or aggregated in multicellular spheroids, are reproduced deducing suitable Cellular Potts Models (CPM). We show that the simulations are in good agreement with the experimental evidence and that the overall process is regulated by the activity of matrix metalloproteinases (MMPs) and by the interplay of the adhesive properties of the cells with the extracellular matrix and...

Intracellular Modelling of Cell-Matrix Adhesion during Cancer Cell Invasion

V. Andasari, M.A.J. Chaplain (2012)

Mathematical Modelling of Natural Phenomena

When invading the tissue, malignant tumour cells (i.e. cancer cells) need to detach from neighbouring cells, degrade the basement membrane, and migrate through the extracellular matrix. These processes require loss of cell-cell adhesion and enhancement of cell-matrix adhesion. In this paper we present a mathematical model of an intracellular pathway for the interactions between a cancer cell and the extracellular matrix. Cancer cells use similar...

Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion

K. Böttger, H. Hatzikirou, A. Chauviere, A. Deutsch (2012)

Mathematical Modelling of Natural Phenomena

Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous cell proliferation and motility rates. The interplay of proliferation and migration dynamics plays an important role in the invasion of these malignant tumors. We analyze the regulation of proliferation and migration processes with a lattice-gas cellular automaton (LGCA). We study and characterize the influence of the migration/proliferation dichotomy (also known...

Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system

Yutaro Chiyo (2023)

Archivum Mathematicum

This paper deals with a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system. Boundedness, stabilization and blow-up in this system of the fully parabolic and parabolic-elliptic-elliptic versions have already been proved. The purpose of this paper is to derive boundedness and stabilization in the parabolic-parabolic-elliptic version.

Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems

Stephan Luckhaus, Yoshie Sugiyama (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the following reaction-diffusion equation: ( KS ) u t = · u m - u q - 1 v , x N , 0 < t < , 0 = Δ v - v + u , x N , 0 < t < , u ( x , 0 ) = u 0 ( x ) , x N , where N 1 , m > 1 , q max { m + 2 N , 2 } .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)] it was shown that in the case of q max { m + 2 N , 2 } , the above problem (KS) is solvable globally in time for “small L N ( q - m ) 2 data”. Moreover, the decay of the solution (u,v) in L p ( N ) was proved. In this paper, we consider the case of “ q max { m + 2 N , 2 } and small L data” with any fixed N ( q - m ) 2 and show that (i) there exists a time global solution (u,v) of (KS) and it decays to...

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Mathematical models of tumor growth systems

Takashi Suzuki (2012)

Mathematica Bohemica

We study a class of parabolic-ODE systems modeling tumor growth, its mathematical modeling and the global in time existence of the solution obtained by the method of Lyapunov functions.

Mechanisms of Cell Motion in Confined Geometries

R. J. Hawkins, R. Voituriez (2010)

Mathematical Modelling of Natural Phenomena

We present a simple mechanism of cell motility in a confined geometry, inspired by recent motility assays in microfabricated channels. This mechanism relies mainly on the coupling of actin polymerisation at the cell membrane to geometric confinement. We first show analytically using a minimal model of polymerising viscoelastic gel confined in a narrow channel that spontaneous motion occurs due to polymerisation alone. Interestingly, this mechanism...

Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling

R. M. H. Merks, P. Koolwijk (2009)

Mathematical Modelling of Natural Phenomena

Cell-based, mathematical models help make sense of morphogenesis—i.e. cells organizing into shape and pattern—by capturing cell behavior in simple, purely descriptive models. Cell-based models then predict the tissue-level patterns the cells produce collectively. The first step in a cell-based modeling approach is to isolate sub-processes, e.g. the patterning capabilities of one or a few cell types in cell cultures. Cell-based models can then identify the mechanisms responsible for patterning in...

Modelling of Cancer Growth, Evolution and Invasion: Bridging Scales and Models

A. R.A. Anderson, K. A. Rejniak, P. Gerlee, V. Quaranta (2010)

Mathematical Modelling of Natural Phenomena

Since cancer is a complex phenomenon that incorporates events occurring on different length and time scales, therefore multiscale models are needed if we hope to adequately address cancer specific questions. In this paper we present three different multiscale individual-cell-based models, each motivated by cancer-related problems emerging from each of the spatial scales: extracellular, cellular or subcellular, but also incorporating relevant information from other levels. We apply these hybrid...

Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents

S. R. McDougall, M. A.J. Chaplain, A. Stéphanou, A. R.A. Anderson (2010)

Mathematical Modelling of Natural Phenomena

Over the past decade or so, there have been a large number of modelling approaches aimed at elucidating the most important mechanisms affecting the formation of new capillaries from parent blood vessels — a process known as angiogenesis. Most studies have focussed upon the way in which capillary sprouts are initiated and migrate in response to diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the contexts of solid tumour...

Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations

A. Marrocco, H. Henry, I. B. Holland, M. Plapp, S. J. Séror, B. Perthame (2010)

Mathematical Modelling of Natural Phenomena

Bacillus subtilis swarms rapidly over the surface of a synthetic medium creating remarkable hyperbranched dendritic communities. Models to reproduce such effects have been proposed under the form of parabolic Partial Differential Equations representing the dynamics of the active cells (both motile and multiplying), the passive cells (non-motile and non-growing) and nutrient concentration. We test the numerical behavior of such models and compare...

Multiphase and Multiscale Trends in Cancer Modelling

L. Preziosi, A. Tosin (2009)

Mathematical Modelling of Natural Phenomena

While drawing a link between the papers contained in this issue and those present in a previous one (Vol. 2, Issue 3), this introductory article aims at putting in evidence some trends and challenges on cancer modelling, especially related to the development of multiphase and multiscale models.

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution algorithm...

Numerical simulation of chemotactic bacteria aggregation via mixed finite elements

Americo Marrocco (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution...

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou (2017)

Proceedings of Equadiff 14

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...

On Chemotaxis Models with Cell Population Interactions

Z. A. Wang (2010)

Mathematical Modelling of Natural Phenomena

This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and...

Currently displaying 41 – 60 of 78